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Abstract—This paper presents a novel approach to estimating
healthcare fraud (HCF) risk that applies network algorithms
to graphs derived from open source datasets. One group of
algorithms calculates behavioral similarity to known fraudulent
and non-fraudulent healthcare providers with respect to measur-
able healthcare activities, such as medical procedures and drug
prescriptions. Another set of algorithms estimates propagation
of risk from fraudulent healthcare providers through geospatial
colocation, i.e., shared practice locations or other addresses. The
algorithms were evaluated with respect to their ability to predict
a provider’s presence on the Office of the Inspector General’s
list of providers excluded from participation in Medicare and
other Federal healthcare programs (exclusion). In an empirical
evaluation, a combination of 15 features achieved an f-score of
0.919 and a ROC area of 0.960 in exclusion prediction. An
ablation analysis showed that most of this predictive accuracy
was the result of features that measure risk propagation through
geospatial colocation.

I. INTRODUCTION

Healthcare fraud (HCF) is a multibillion-dollar drain on
healthcare spending [8], consuming an estimated $98 billion of
annual Medicare and Medicaid spending in the United States.1

The magnitude of HCF is very large in proportion to the
resources available for investigation and prosecution of these
fraudulent activities, making prioritization of investigative
leads essential. Automated estimation of HCF risk has the
potential to maximize the use of limited investigative resources
by identifying the individuals and institutions at highest risk
of fraud.

Graph analysis is a promising framework for HCF risk
assessment for several reasons. First, HCF often involves
multiple entities; by making relationships among such entities
explicit, graph representations facilitate algorithms for detect-
ing coordinated activity and the spread of social influence. In
addition, graph analytics have a proven track record in law
enforcement and intelligence analysis applications, suggesting
that they might be equally useful in the HCF domain.

This paper describes an initial exploration of graph analytics
for HCF risk assessment using open source healthcare data. We
describe the modeling and ingestion of open source datasets
and propose novel algorithms for predicting an observable con-
sequence of HCF: presence on the list of providers excluded
from participation in Medicare (and other Federal healthcare
programs) published monthly by the Office of the Inspector
General (OIG). We refer to presence on this list as exclusion

and the likelihood that a given provider will be on the OIG
list as the provider’s exclusion risk.

II. DATASETS

Healthcare providers excluded from Medicare eligibility are
set forth in a “List of Excluded Individuals/Entities” (LEIE)
published by the OIG.2 Unfortunately, the LEIE comprises
only a small subset of individuals identified by insurance
providers or law-enforcement officials as having committed
HCF. For example, providers who are accused of overcharg-
ing insurers or Medicare often relinquish the overpayments
without any public acknowledgement or notice. However,
the LEIE is among the few open source data sets of HCF
information. We therefore treat inclusion on the LEIE as the
predicted variable whose probability we strive to estimate as
an observable indication of HCF.

We draw our predictive variables from three datasets. The
first is the “Medicare Provider Utilization and Payment Data:
Physician and Other Supplier” (PUF) data for 2012, 2013,
and 2014 published by the Centers for Medicare & Medicaid
Services (CMS).3 This summarizes each provider’s annual
charges to Medicare under each treatment category denoted
by a Healthcare Common Procedure Coding System (HCPCS)
code. We hypothesized that excluded providers may have
distinctive billing patterns that distinguish them from non-
excluded providers.

The second dataset of predictive data consists of the “Medi-
care Provider Utilization and Payment Data: Part D Prescriber”
(Part-D) data for 2013 published by CMS.4 This consists
of information about the prescription drugs that individual
physicians and other healthcare providers prescribe in the
Medicare Part D Prescription Drug Program. We hypothesize
that excluded and non-excluded providers may differ in their
drug-prescribing patterns.

Finally, we used National Provider Identifiers (NPIs) to
obtain unique identifiers for providers. NPIs are set forth in
the National Plan and Provider Enumeration System (NPPES)
data set from 2015.5 Unfortunately, the LEIE has NPIs for
only 5% of the excluded providers, in part because a large
proportion of providers on the list were excluded prior to NPI
requirements. We therefore found it necessary to implement
an identity-matching procedure in Lucene6 to match excluded
providers in the LEIE with providers in the NPPES.



The identity-matching algorithm compared names in the
LEIE of both organizations and individual providers after we
preprocessed the NPPES and LEIE datasets for variations in
name conventions. For instance, LEIE could list an organiza-
tion as “St Joe” when NPPES would have “St. Joe.” Organi-
zations, in particular, showed varied name conventions. To ac-
count for potential spelling mistakes, the matching procedure
looks not just for exact matches, but also for matches based
on phonetic similarity or edit distance. The algorithm used
additional features for identity matching, including requiring
that a matching set of providers have addresses in the same
state. We evaluated the accuracy of identity matching on a set
of providers whose NPIs were specified in the LEIE dataset.
In a leave-one-out evaluation, the algorithm found 82% of the
providers in the test set.

Even with this level of performance, only 10-15% of
LEIE providers with missing NPIs could be matched with
sufficient certainty, so the number of known true positives,
that is, providers known to be excluded (just 12,153 providers
matched providers at least one drug prescription, treatment
code, or location), is small relative to the total number of
providers (over 4.7 million).

III. GRAPH DESIGN AND IMPLEMENTATION

For the experiments described below, we implemented our
graph in Neo4j,7 a popular open source graph database, using
the 2.3.0 baseline. However, nothing in the experiment is
dependent on this particular choice of graph database; we
also implemented several of the graph algorithms in Spark
GraphX,8 which may be a more suitable platform for ex-
tremely large graphs because, unlike Neo4j, GraphX can
operate on distributed architectures.

Creation of a graph database is a modeling activity in that
there is no unique graph representation of any particular set
of data; the best representation is one that best facilitates the
particular algorithms of interest. In our case, we wished to
evaluate the feasibility of estimating HCF risk by comparing
providers based on billing and drug-prescription behavior
and by estimating risk propagation through location links.
We therefore represented each provider, each prescription
drug, and each treatment code (HCPCS) as a separate node.
Providers were linked to each drug they prescribed by a
PRESCRIBED edge whose attributes represented the number
of patients prescribed the drug by the provider, the total cost of
the prescriptions, and other Part-D data. Providers were linked
to each HCPCS by a CHARGE OF link whose attributes
include average Medicare payment, the number of unique
beneficiaries, and other treatment information that appears as
columns in the PUF dataset .

To facilitate graph-based geospatial reasoning, locations
were represented as nodes, and each provider was connected
by LOCATED AT edges to each address associated with that
provider. In general, there could be multiple such addresses
corresponding to multiple practice locations or institutional
affiliations. Addresses in these files were run through a geospa-
tial tagging (geotag) algorithm which yields latitude and lon-

gitude for each provider address. For some addresses only city
and state were used since street addresses were not available.
LOCATION nodes are uniquely identified by a combination
of latitude and longitude. Other nodes included exclusions
(there are 17 distinct exclusion codes, each corresponding to a
possible reason for being excluded) and generic drugs (distinct
from, but sometimes equivalent to, non-generic drugs).

Figure 1 shows a small example subgraph illustrating the
key nodes and relationships. This graph contains roughly 173
million edges and 5.05 million nodes.

IV. GRAPH ANALYTICS

We distinguish three basic categories of graph analytics:
1) Similarity functions between pairs of entities based on

structural similarity
2) Attribute estimation based on network propagation
3) Complex structure detection and analysis

Structural similarity analytics include alias detection [6] and
nearest-neighbor classification or regression. In this work, we
estimate behavioral-similarity from structural similarity. The
second family of graph analytics, those based on network
propagation, can be used to predict cascades or epidemics or to
estimate centrality, status, or contagion [4], [2]. In this work,
we estimate the exclusion risk of each individual provider
based on network flow to that provider from known excluded
providers through location edges. The third category of graph
analytics is not addressed in this work because we lack a
priori models of fraudulent enterprises, organizations, or other
complex structures.

A. Behavior-Vector Similarity

As described above, we hypothesized that the billing or
drug-prescription behavior of providers might predict exclu-
sion risk. Our framework for behavior-based risk estimation
is shown in Figure 2. We compare each unknown provider
to each member of positive and negative reference sets. The
similarity of each pair of providers, in turn, is determined by
comparing the pivot nodes adjacent to each, where pivots are
either treatment types (HCPCS) or drugs.

Specifically, for each provider (unknown or reference-set
member) we define a behavior-vector consisting of a vector
of edge weights to each adjacent pivot. The value of each term
in the vector corresponding to a given pivot is either 0.0, if the
provider node has no edge to that pivot, or a value calculated in
a manner specific to the type of pivot. In our experiments, the
weight of an edge to a drug-type node is the “TotalDrugCost,”
meaning the total amount billed by this provider for this
particular drug (this value is a column in the Part-D dataset).
The weight of an edge to a treatment type (HCPCS) is
calculated as the product of the “AvgMedicarePayment” and
the “BeneUniqCount,” which are columns in the PUF dataset
that represent the average Medicare payment and the number
of unique beneficiaries, respectively. The similarity between
any pair of providers with respect to a given form of behavior
(such as drug prescription or billing) can be estimated by



Fig. 1. Neo4j web server view of a subgraph showing a provider, labeled “martinez,” who shares a location with an excluded provider,“martin,” together
with some of these providers’ prescriptions and HCPCS (treatment codes).

applying a standard vector-similarity metric to the providers’
behavior vectors.

There are numerous vector-similarity metrics, including
Jaccard, Dice, and L norms, but we obtained the best results
using cosine similarity, which produces meaningful results
even when the vectors being compared differ significantly in
magnitude. In making the cosine calculation, we experimented
with scaling each term associated with a given pivot by the
log-inverse vertex degree of that pivot. This formalizes the
intuition that the fact that two people both watch the same
Super Bowl game (a very common connection) says much
less about their similarity than if they watch the same TED
Talk (a much rarer connection) or the fact that two people
both live in Los Angeles says less about their similarity than
if they both live in Taos or Nome. We observed that inverse
vertex-degree weighting was generally associated with better
performance.

To convert the inverse-degree-weighted cosine between a
provider and members of positive and negative reference sets
into features usable for risk estimation, we took the mean of
the k closest members of each set, producing three features:

1) negative-similarity, mean similarity to the closest k
members of the negative reference set

2) positive-similarity, mean similarity to the closest k
members of the positive reference set

3) neg-sim-ratio, the ratio of features 1 and 2
Repeating this calculation for both types of piv-

ots produces 6 real-valued features: HCPCS-negative-
similarity, HCPCS-positive-similarity, HCPCS-ratio, drug-
negative-similarity, drug-positive-similarity, and drug-ratio.

B. Risk Propagation

We estimated propagation of risk through colocations, i.e.,
shared addresses. Colocation was based on edges connecting
providers to practice, mailing, or business addresses.

Four approaches were explored to measure risk propagation
through location edges.

1) bad-colocator-count, the number of colocated excluded
providers

2) bad-2hop-colocator-count, the number of paths to ex-
cluded providers two location hops away

3) bad-colocator-ratio, the number of colocated excluded
providers, scaled by the vertex degree of each location
(so that a high-degree location contributes less to the
score than a low-degree location)

4) bad-2hop-colocator-ratio, the number of paths to ex-
cluded providers two location hops away, scaled by the
vertex degree of each location

For example, in Figure 3 there are 4 paths from provider1
to positive instances, so bad-colocator-count = 4, which the
bad-colocator-count of provider2 = 0. In bad-colocator-ratio,
the number of paths through each location node is scaled by
the vertex degree of the location node, i.e., 3/3 + 1/2 = 1.5.



Fig. 2. A framework for behavior-based risk estimation in which a provider is compared to known positive and negative instances with respect to weighted
connections to pivots, which are nodes that may be indicative of behavior, such as treatment types (HCPCS) or drug prescriptions, and that are common to
multiple providers.

Fig. 3. Risk propagation is estimated by counting the number of distinct paths from a given provider to excluded providers (labeled ”Pos” for ”positive
instance” in the figure).



Provider3’s bad-2hop-colocator-count = 4 + 0 = 4 and bad-
2hop-colocator-ratio = 1.5 + 0 = 1.5.

C. Provider Attributes

Although the focus of this work was on graph analytics, we
experimented with one provider attribute:

1) new-patients-per-bene, the proportion of services pro-
vided to new patients. The intuition is that a provider
who renders a large number of services for each new
patient may be rendering more services than medically
necessary.

V. EXPERIMENTAL DESIGN

We performed an experiment on a set of 12,000 excluded
providers, each of which had at least one drug prescription,
treatment, or address (i.e., a LOCATED AT, CHARGE OF,
or PRESCRIBED link). Providers lacking these links would
be disconnected from the graph and therefore not amenable
to graph analysis. As discussed above, deriving exclusion-
risk estimates based on drug or HCPCS behavior-vectors
requires reference sets of known excluded and non-excluded
providers. Accordingly, the 12,000 excluded providers and
12,000 randomly selected non-excluded providers were split
into a reference set containing 6,000 reference excluded
providers and 6,000 reference non-excluded providers, and a
cross-validation set containing 6,000 test excluded providers
and 6,000 test non-excluded providers.

Following the procedures described in the previous section,
11 features were derived for each member of the cross-
validation set. In doing so we excluded pivots with vertex
degree greater than 100,000 in calculating behavior-vector
similarity, (on the assumption that such high-degree pivots
have little discriminative ability and slow computation); 6429
HCPCS nodes and 2669 drug-type nodes were below this
threshold. For the nearest-neighbor calculations, k = 3.

The 11 graph-based features consisted of 3 HCPCS
structural-similarity features, 3 drug-type behavior-vector fea-
tures, 1 feature based on provider attributes, and 4 risk-
propagation features. These features were used as input to
supervised concept-learning algorithms in the WEKA9 frame-
work. The results below were calculated applying 10-fold
cross validation using WEKA’s j48 decision tree algorithm.
Similar results were obtained from other inductive algorithms,
but j48 is quite fast, and decision tree models are particularly
easy to understand.

VI. RESULTS

In 10-fold cross validation on the full 12,000 member 11-
feature dataset, the mean f-measure was 0.919 and the mean
ROC area was 0.960. This result indicates that graph features
distinguish excluded providers from non-excluded providers
with an impressive degree of accuracy.

To better understand the contributions of the various graph
features and provider attributes, we performed an ablation
study that separated the contribution to classification accuracy

TABLE I
CONTRIBUTIONS OF VARIOUS GRAPH-ANALYTIC FEATURE SUBSETS TO

OVERALL 10-FOLD CROSS-VALIDATION ACCURACY.

feature set f-measure ROC area
All 0.919 0.960
Risk propagation features 0.901 0.815
HCPCS behavior-similarity features 0.715 0.718
Provider attributes 0.697 0.697
Drug behavior-similarity features 0.657 0.666

TABLE II
MEAN CLASSIFICATION ACCURACY IN 10-FOLD CROSS-VALIDATION OF

FOUR TYPES OF RISK-PROPAGATION FEATURES

feature set f-measure ROC area
coloc-1-hop 0.896 0.892
coloc-2-hop 0.571 0.619
coloc-scaled-1-hop 0.896 0.892
coloc-scaled-2-hop 0.479 0.569

of each of 4 distinct subsets of the remaining features, as set
forth in TableI and summarized in Figure 4:

These results indicate that by far the most predictive of the
remaining features are those based on risk propagation through
location edges. The union of all the features is nevertheless
more predictive than any one feature type by itself.

Table II separates the performance of the four individual
risk-propagation features, indicating that almost all of the
contribution is from 1-hop colocation. Scaling the count of
bad colocators by location vertex degree appears to have little
effect on accuracy.

Another view of the relative contribution of the 11 graph-
analytic-derived features is set forth in Table III, which shows
the mutual information between each feature and the category
”exclusion.” One-hop colocation has the most information, but
all the features are informative.

It is striking that risk propagation appeared to contribute so
strongly to risk prediction, given that network propagation has
been shown to be highly predictive of individual attributes in
other contexts. We surmise that location is a strong proxy for
the kind of social connections that facilitate the propagation
of social influence [5] .

TABLE III
MUTUAL INFORMATION BETWEEN GRAPH-ANALYTIC FEATURES AND

MEDICARE EXCLUSION

feature mutual information
coloc-1-hop 0.5989
coloc-scaled-1-hop 0.5793
HCPCS-negative-sim 0.1667
new-patient-per-bene 0.1483
HCPCS-ratio 0.1265
HCPCS-positive-similarity 0.1244
drugs-negative-similarity 0.1034
coloc-scaled-2-hop 0.0989
coloc-2-hop 0.0956
drugs-ratio 0.0956
drugs-positive-similarity 0.0937



Fig. 4. The relative contributions of risk propagation, HPCPS, provider, and drug features to overall 10-fold cross-validation accuracy.

VII. RELATED WORK

There is a rich and rapidly expanding research literature on
social network analysis.10 Previous work in graph analytics for
healthcare fraud detection has typically emphasized anomaly
detection, e.g., [7], [1], [3], rather than supervised concept
learning. The paucity of open source ground truth healthcare
fraud datasets has made large-scale evaluations of HCF ana-
lytics, such as is set forth in this paper, rare.

The approach of measuring similarity between nodes by
structural similarity, applied in this work to detect behavioral
similarity with respect to treatment and drug-prescription
patterns, has been used primarily for alias detection [6] and has
generally not used cosine as a similarity metric. A vast amount
of research addresses propagation of influence through social
networks, e.g., [5]. However, to the best of our knowledge,
our work is the first to apply this approach for HCF risk
assessment.

VIII. SUMMARY AND FUTURE WORK

This paper has described how the problem of predicting
HCF risk can be formulated in terms of network algorithms
operating on a graph derived from Medicare payment, location,
drug-prescription, and exclusion data. An empirical evaluation
demonstrated that a combination of 11 features can achieve an
f-score of 0.919 and a ROC area of 0.960 in 10-fold cross-
validation and that the most predictive features are based on
colocation-based risk propagation.

We anticipate that a richer graph representation and more
extensive target set would significantly improve the predictive
accuracy of this approach. In particular, we used HCPCS and
drug prescriptions as pivots in assessing behavioral similarity,

but many other types of behavioral similarity might be equally
or more informative. As we increase the richness of our graph,
we expect to evaluate these alternative sources of behavior-
similarity information and explore the extent to which com-
bining these sources leads to improved predictive accuracy.

We plan to apply this work to datasets containing much
more extensive true positives, that is, providers known to have
committed healthcare fraud, and to richer graphs containing
many additional types of information relevant to HCF predic-
tion. In addition, improving the identity-matching algorithms
to include other match types or relaxing match restrictions
could provide a larger target set.

ACKNOWLEDGMENT

This work was funded under contract number CECOM
W15P7T-09-C-F600. The MITRE Corporation is a private,
not-for-profit corporation that operates Federally Funded Re-
search and Development Centers in the public interest. This
document is approved for Public Release, Distribution Unlim-
ited, Case Number 16-0807. c©2016 The MITRE Corporation.
All rights reserved.



NOTES
1http://www.economist.com/news/united-states/

21603078-why-thieves-love-americas-health-care-system-272-billion-swindle
2http://oig.hhs.gov/exclusions/exclusions\ list.asp
3https://www.cms.gov/research-statistics-data-and-systems/

statistics-trends-and-reports/medicare-provider-charge-data/
physician-and-other-supplier.html

4https://www.cms.gov/Research-Statistics-Data-and-Systems/
Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/
Part-D-Prescriber.html

5http://www.resdac.org/resconnect/articles/121
6https://lucene.apache.org/
7neo4.com
8http://spark.apache.org/graphx/
9http://www.cs.waikato.ac.nz/ml/weka/

10See, for example, the journal of Social Network Analysis and Mining and
the IEEE/ACM International Conferences on Advances in Social Networks
Analysis and Mining
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