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Abstract

Many complex biological systems are characterized both by incomplete mod�

els and limited empirical data� Accurate prediction of the behavior of such

systems requires exploitation of multiple� individually incomplete� knowledge

sources� Model�based adaptation is a technique for integrating case�based rea�

soning with model�based reasoning to predict the behavior of biological systems�

This approach is implemented in CARMA� a system for rangeland grasshopper

management advising that implements a process model derived from protocol

analysis of human expert problem�solving episodes� CARMA�s ability to pre�

dict the forage consumption judgments of expert pest managers was empirically

compared to that of case�based and model�based reasoning techniques in isola�

tion� This evaluation provided initial con�rmation for the hypothesis that an
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integration of model�based and case�based reasoning can lead to more accurate

predictions than either technique individually�

� Prediction in Biological Systems

Decision�support in agriculture and natural resources management often requires pre�

diction of the behavior of biological systems� For example� providing advice about

the optimal planting time for a crop may require predicting the emergence date of

important pests of that crop �PS���� Similarly� determining the most cost�e�ective

response to a given pest infestation requires predicting crop or forage loss under each

available option�

Various approaches to behavioral prediction are possible� In systems for which a

precise model exists and accurate values of state variables can be determined� simu�

lation can be used to predict the system	s behavior� Alternatively� if there are su
�

cient historical data� empirical methods such as case�based reasoning �CBR� �AP�
��

decision�tree induction �Qui���� or statistical techniques can be lead to accurate pre�

diction�

Precise models exist for the behavior of many simple physical systems� However�

models of agricultural� ecological� and other biological systems are often incomplete�

either because a complete state description for such systems cannot be determined

or because the number and type of interactions between system elements are poorly

understood� Moreover� while historical data often exist for such systems� they are

often insu
cient for accurate prediction using empirical methods� As illustrated in

Figure �� biological systems often occupy an intermediate point in the continuum

between highly analytic domains� such as celestial mechanics and the prediction of

artifact behavior� and highly empirical domains� such as sociology �AH���� In such

biological systems� both models and empirical data exist� but neither is per se suf�

�cient for accurate prediction� Accurate prediction of the behavior of such systems

requires exploitation of multiple� individually incomplete� knowledge sources�
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This paper describes the use of model�based adaptation as a technique for inte�

grating case�based reasoning with model�based reasoning in domains in which nei�

ther technique is individually su
cient for accurate prediction� Under this approach�

case�based reasoning is used to �nd an approximate solution� and model�based rea�

soning is then used to adapt this approximate solution into a more precise solution�

In model�based adaptation� models are used to compensate for insu
cient case cov�

erage by extending the range within which cases can be adapted� Conversely� cases

compensate for incompleteness in the models by providing a set of reference points

with known values�

The next section describes rangeland pest management� a task that requires pre�

dicting the behavior of a complex biological system� and sets forth a process descrip�

tion of expert problem solving in this domain� Section � describes CARMA� a system

that implements this process description� and describes how CARMA performs model�

based case adaptation� Section 
 describes how CARMA learns match and adaptation

weights� An experimental evaluation in which the predictive accuracy of CARMA	s

model�based adaptation component is compared to that of case�based and model�

based reasoning in isolation is set forth in Section �� This evaluation provides initial

con�rmation that model�based case adaptation can lead to more accurate simulation

of entomologists	 predictions than empirical or model�based reasoning alone�

� Rangeland Pest Management

Rangeland ecosystems typify biological systems having an extensive but incomplete

causal theory and limited empirical data� Management tasks for rangelands include

optimal stocking rates and grazing systems� water development� wildlife enhancement�

noxious weed control� and insect pest management� Each of these management tasks

requires evaluating alternative actions by predicting their potential consequences�

The particular rangeland management task of interest to us is pest management�

On average� grasshoppers annually consume ������ of rangeland forage in the west�
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ern United States� at an estimated loss of �
�� million �HO���� Rangeland grasshop�

per infestations can be treated with chemical or biological insecticides� but in many

situations the costs of insecticide application exceed the value of the forage saved�

Determining the most cost�e
cient response to a grasshopper infestation requires

predicting the forage savings that would ensue from each response and comparing the

savings to the cost of the response itself�

While model�based reasoning can play a role in grasshopper management� there is

a general recognition that the interactions a�ecting grasshopper population dynam�

ics are too poorly understood and too complex to permit precise prediction through

numerical simulation �LL��� Pim��� AH���� However� entomologists and pest man�

agers appear able to provide useful recommendations to ranchers� This indicates that

other sources of knowledge can compensate for the absence of a complete model of

rangeland ecosystems�

To explicate these knowledge sources and the problem�solving methods employed

by experts in applying this knowledge� we performed a protocol analysis of problem

solving by several experts in rangeland grasshopper management at the University of

Wyoming� For each expert� we transcribed several problem�solving episodes in which

the expert responded to a simulated telephone inquiry by a rancher� These �solve�

aloud� problem�solving episodes illustrated the elicitation of relevant case facts by

the expert� the formation and discrimination among tentative hypotheses� and expert

explanations�

The key expert problem�solving step revealed by the protocol analysis was pre�

diction of the proportion of available forage that will be consumed by grasshoppers

if no action is taken� Experts appear to perform this predictive step by comparing

the current situation to prototypical infestation scenarios� For example� a moderate

density of emerging grasshoppers in a cool� wet spring is associated with a low pro�

portion of forage consumption because wet conditions both promote growth of fungal

pathogens and increase forage growth� Moreover� cool conditions tend to prolong






the early developmental phases� during which grasshoppers are most susceptible to

pathogens and other mortality factors� In predicting forage consumption by com�

paring new cases to prototypical scenarios� such as the cool� wet spring prototype�

experts appear to be using a form of case�based reasoning�

If a particular new case di�ers in some ways from a prototype� the expert can

perform causal reasoning to predict the e�ects of the di�erences� For example� if

there is a moderately low density of emerging grasshoppers in a cool� wet spring� an

expert will predict low forage consumption because lower density generally means less

consumption� and in the prototypical situation low consumption results even from a

moderate grasshopper density�

The prototypical infestation scenarios are expressed in terms of abstract features�

such as grasshopper species� developmental phases� and density� that are relevant to

the expert	s model of rangeland ecosystems� In contrast� a rancher	s description is

almost always in terms of directly observable features� such as the color� size� and

behavior of grasshoppers� temperatures� precipitation� etc� As a result� determining

the most similar infestation scenario requires inferring the relevant abstract features

from a set of observations provided by the rancher� Experts exhibit great �exibility

in inferring these features� For example� if a rancher is unable to provide the infor�

mation that discriminates most reliably among grasshopper species �e�g�� whether the

grasshoppers have slanted faces or a spur on their throats�� the expert is able to ask

less reliable but easier to answer questions �e�g�� �Do the grasshoppers have brightly

colored wings or make a clicking sound in �ight����

If the forage consumption will be high enough to lead to forage competition with

livestock� the expert determines the interventions that are compatible with local con�

ditions� using knowledge such as that wet conditions preclude the use of malathion�

or chemical treatments are precluded by environmental sensitivity� Finally� the ex�

pert estimates the relative value of the forage saved in this and future seasons and

�During their lifetime� grasshoppers progress through three developmental stages� egg� nymph�

and adult� The nymphal stage usually consists of �ve instars separated by molts� We de�ne the

developmental phases of a grasshopper�s lifecycle to include egg� �ve nymphal instars� and adult�
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the cost of each control measure� The expert then advises the rancher to take most

economical action� either applying the most cost�e�ective control measure or doing

nothing� Experts can justify their advice by appeal to an underlying causal model�

but seem to use this model only in explaining and adapting the predictions associated

with prototypes and not in performing any sort of simulation�

In summary� the protocol analysis indicated that experts in this domain use a

highly eclectic reasoning method that includes a form of case�based reasoning for

consumption�prediction� rules for inferring case features and acceptable control mea�

sures� and causal reasoning for adaptation and explanation� In addition� experts

exhibit opportunistic problem solving in that they terminate a consultation as soon as

the minimum necessary information has been obtained� For example� if the majority

of grasshoppers are at too early a stage of development to permit the extent of the

infestation to be determined� the rancher is informed that no prediction can be made

until later in the season�

� CARMA� A Rangeland Pest Management

Advisory System

We have implemented the problem�solving process described in the previous section

in a system termed CARMA �CAse�based Range Management Adviser�� The pro�

tocol analysis indicated that advice should consist of a treatment recommendation

supported by an explanation in terms of causal� economic� and pragmatic factors� in�

cluding a numerical estimate of the proportion of forage consumed and a cost�bene�t

analysis of the various treatment options�

The consultation process is as follows�

�� Determine the relevant facts of the infestation case� such as grasshopper species�

developmental phases� and density� from information provided by the user� This

requires inference rules such as� �if grasshoppers are observed in the spring to
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have brightly colored wings or make a clicking sound in �ight� then they are

bandwinged adults that overwintered as nymphs��

�� Determine whether grasshopper consumption will lead to competition with live�

stock for available forage�

�a� Estimate the proportion of available forage that will be consumed by each

distinct grasshopper population �i�e�� nymphal overwintering� egg overwin�

tering�� For each distinct grasshopper population �i�e�� subcase��

i� Determine the prototypical infestation scenario that most closely matches

the current subcase� This requires model�based reasoning to assist

matching by aligning the developmental phases of the prototypical

case and the subcase�

ii� Adapt the consumption estimate predicted by the prototypical case

based on the featural di�erences between the prototypical and cur�

rent subcase� This requires model�based reasoning to account for the

in�uence of each feature on consumption�

�b� Total the forage loss estimates for each subcase to predict the overall pro�

portion of available forage that will be consumed by grasshoppers�

�c� Compare grasshopper consumption with the proportion of available forage

needed by livestock�

�� If there will be competition� determine what possible treatment options should

be excluded using rules such as �Wet conditions preclude the use of malathion��

�Environmental sensitivity precludes all chemical treatments��


� If there are possible treatment options� for each one provide an economic anal�

ysis by estimating both the �rst�year and long�term savings�

�a� Estimate the �rst�year savings using model�based reasoning to determine

the proportion of forage which would be saved given the e
cacy of the
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treatment type� the developmental phases of the grasshoppers at the time

of treatment� and the proportion of lifetime consumption by grasshoppers

at each phase�

�b� Estimate the long�term savings using rule�based reasoning to determine if

the majority of the grasshoppers will begin laying eggs before treatment

can be applied given the developmental distribution of the grasshoppers at

the time of treatment� If the majority of grasshoppers will not begin laying

eggs� use statistical reasoning to determine the decreased probability of

infestation in subsequent years given the Markov transitional probabilities

for the infestation location and the e�ect of the treatment type on bene�cial

control agents �� i�e�� predators and parasites��

To model the ability of human experts for opportunistic problem solving� CARMA

terminates a consultation if it discovers any of the following conditions�

� The current date is outside of the season when forage needed for livestock grows�

� The size of the infestation is below the minimum threshold for viability�

� The majority of the grasshoppers overwintered as nymphs� Such grasshoppers

divide their consumption between two growing seasons and therefore consume

far less during the growing season than grasshoppers overwintering as eggs�

� The majority of the grasshoppers are at such an early developmental phase that

the extent of the infestation cannot be predicted with reasonable certainty or at

such a late developmental phase that a signi�cant proportion of lifetime forage

consumption and egg�laying have already occurred� making treatment futile�

��� Determining Relevant Case Features

CARMA begins a consultation by eliciting observations from the user through a

series of window�based interface procedures� These observations are used to infer
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the relevant features of a new case� such as the species� density� and developmental

phases of the grasshoppers� CARMA uses multiple levels of rules for inferring each

case feature� ordered by the certainty or the accuracy of each rule� The rules are

applied in succession until either the user can provide the necessary information or a

default value is chosen� For example� if the value of the case feature �total number

of grasshoppers per square yard� is unknown to the user� CARMA instructs the

user to estimate the number of grasshoppers that would be present in �� square�

foot circles� If the user can	t provide this information� the system attempts to infer

this feature using a rule that grasshopper density is equal to ��� times the number

of grasshoppers seen hopping away with each step taken by the user in the �eld�

Otherwise� the value defaults to the statewide historic average of four grasshoppers

per square yard� By applying rules in the order of their certainty� CARMA reasons

with the best information available�

A typical interface window for determining the observed grasshopper type distri�

bution appears in Figure �� It includes the options �Why� for describing why this

information is important to the consultation� �Help� for advising the user about the

various window features and their operations� �How To� to explain the proper pro�

cedure for gathering the required information� �Not sure� to trigger the selection of

an alternative rule for inferring the feature� and �OK� to indicate that the user has

chosen an answer� �Display planthopper� shows a small insect that the user should

distinguish from a grasshopper� Figure � shows an input window that asks the user

to provide the infestation location by clicking on a map of Wyoming	s major roads�

towns� and county borders� CARMA uses this location to retrieve the historical values

for the site including infestation history� range value� temperature� and precipitation�

Since a complete case speci�cation is not always required for useful advice� CARMA

�lls in the facts of a new case opportunistically� This means that CARMA asks the

user for information only when the corresponding case feature is required for the rea�

soning process to continue� At the earliest point at which a decision can be made�

the case�feature inference process halts� advice is given� and the consultation is com�
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pleted� This minimizes the amount of input required for CARMA to make a decision�

thereby accelerating consultations� For example� if the date and location of an infes�

tation indicate that it is too early to assess the severity of a grasshopper infestation�

CARMA advises the user to rerun the consultation at a later time without prompting

for further information�

��� Case Matching

The protocol analysis indicated that pest managers estimate forage consumption by

comparing new cases to prototypical infestation scenarios� These prototypical cases

di�er from conventional cases in two important respects� First� the prototypical cases

are not expressed in terms of observable features �e�g�� �Whenever I take a step� I see

four grasshoppers with brightly colored wings �y��� but rather in terms of abstract

derived features �e�g�� �Approximately six nymphal overwintering grasshoppers in the

adult phase per square yard��� Second� the prototypical cases are extended in time�

representing the history of a particular grasshopper population over its lifespan� Each

prototypical case is therefore represented by a �snapshot� at a particular� representa�

tive point in time selected by the entomologist� In general� this representative point

is one at which the grasshoppers are at a developmental phases in which treatment

is feasible� An example prototypical case appears as Case
 in Table ��

A tract of rangeland almost invariably contains multiple grasshopper species�

which may di�er widely in consumption characteristics� In particular� grasshoppers

that spend the winter as nymphs consume far less during the growing season than

grasshoppers overwintering as eggs� CARMA therefore partitions the overall popu�

lation of a case into subcases according to life history �i�e�� overwintering as nymphs

or eggs�� The overall grasshopper population is initially divided into three observed

categories� bandwinged �i�e�� grasshoppers having brightly�colored wings or make a

clicking sound in �ight�� forb or mixed grass�forb feeders �i�e�� grasshoppers hav�

ing a round head with a spur throat�� and grass feeders �i�e�� grasshoppers having a

slanted face or pointed head� or a round head with no spur throat�� If the grasshop�
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pers are part of the bandwinged category� CARMA concludes that the grasshopper

population is nymphal�overwintering� Otherwise� the population is determined to be

egg�overwintering� For example� the new case set forth in Table � is split into two

subcases� SubcaseA and SubcaseB� based on overwintering type�

To predict the forage loss of a subcase� CARMA �rst retrieves all prototypical

cases whose life history �i�e�� overwintering type� matches that of the subcase� The

weighted sum of featural di�erences between each prototypical case and the new sub�

case is calculated to determine the most similar prototypical case� Match weights

are determining from the mutual information gain between case features and quali�

tative consumption categories in a given set of training cases� since recent research

has indicated that this is often the most accurate measure of featural importance

for matching �WD���� Separate match weights are computed for each grasshopper

overwintering type for the seven case features� precipitation� temperature� range value�

infestation history� average developmental phase� density� and feeding type� Quantitative

features� such as density� are converted to qualitative values for computation of mu�

tual information gain� since small quantitative variations seemed to have little e�ect

on matching� The di�erence between two individual feature values is determined by

�nding the di�erence between the positions of the values in an ordered qualitative

feature value list� For example� range value can equal one of the qualitative values in

the ordered set flow� low�moderate� moderate� high�moderate� and highg� so that the

matching feature di�erence between low and high� the maximum possible di�erence�

is four� The forage loss prediction associated with the best matching prototypical

case is then adapted to apply to the current subcase�

��� Model�Based Adaptation

The assumption underlying model�based adaptation is that the causal models asso�

ciated with a biological or other partially understood systems may be accurate in

the neighborhood of a case� even if the models are not per se su
cient for accurate

prediction throughout the entire feature space� CARMA uses three speci�c forms of
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model�based adaptation� temporal project� featural adaptation� and critical period

adaptation� The details of these adaptation methods re�ect the particular causal

models associated with rangeland ecosystems� However� we believe that the general

approach of performing simulation or other model�based reasoning to adapt a case to

apply to new cases in its neighborhood in feature space has applicability to a wide

range of biological systems�

����� Temporal Projection

Since prototypical cases are extended in time but are represented at a particular

moment� CARMA must project the best matching prototypical case forward or back�

wards in time to align its average developmental phase with that of the new subcase�

This requires using a model to simulate grasshopper attrition� which depends on de�

velopmental phase� precipitation� and developmental rate �which in turn depends on

temperature� throughout the interval of the projection� CARMA assumes that the

grasshoppers within a developmental phase are evenly distributed throughout the

phase� Therefore� CARMA breaks the distribution into daily populations� projects

the populations the required number of days �adjusting the density each day based on

attrition�� then regroups the daily populations into their new developmental phases�

Attrition rates are adjusted by scalars �one scalar for precipitation  wet� and an�

other for precipitation  non�wet� that are learned via the algorithms described in

Section 
� A graphic example of temporal projection appears in Figure 
�

For example� the prototypical case that best matches SubcaseA is Case
� shown in

Table �� Because the developmental phase of Case
 before projection is earlier than

that of SubcaseA� the population in Case
 must be projected forward in time in order

for it to be at the same stage of development as the population in SubcaseA� Projec�

tion forward in time causes grasshoppers to be removed from the population due to

attrition �i�e�� ���� grasshoppers per square yard before projection to �
�� grasshop�

pers per square yard after projection�� Temporal projection aligns developmental

phases but not necessarily dates�
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����� Featural Adaptation

The forage loss predicted by the best matching prototypical case� FL�PC�� is modi�ed

to account for any featural di�erences between it and the subcase� based on the

in�uence of each of the n features on consumption as represented by a list of featural

adaptation weights !A  �A�� � � � � An�� Thus� the predicted forage loss for the new

subcase� FL�NC�� is determined as follows�

FL�NC�  FL�PC� "
nX
i��

Ai �QFD�i�

where QFD�i� is the quantitative di�erence for feature i between the new subcase

and prototypical case� For example� a lower temperature value means lower forage

losses� because lower temperatures tend to slow development� increasing grasshopper

attrition� Thus� the forage loss estimate predicted by Case
#���#must be adapted

downward somewhat to account for the fact that temperatures in SubcaseA �cool�

are lower than in Case
 �normal�� In determining the quantitative feature di�erence

between the new subcase and the prototypical case for qualitative features such as

temperature� CARMA computes a simple di�erence�

Q�NC� i��Q�PC� i�

where Q�NC� i� and Q�PC� i� are the quantitative values for feature i in the new

subcase and prototypical case� respectively� For quantitative features such as density�

proportion of lifetime consumption in the critical period� and total area infested� a

proportional di�erence is used�

Q�NC� i��Q�PC� i�

Q�PC� i�

Adaptation weights are set using a hill�climbing algorithm that optimizes CARMA	s

predictive accuracy on training instances �discussed in Section 
�� The weights used in

featural adaptation can be viewed as a linear approximation of the function from de�

rived case features to consumption amounts in the neighborhood of each prototypical

case�
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����� Critical Period Adaptation

Grasshopper consumption is most damaging if it occurs during the critical forage

growing period� i�e�� the portion of the growing season during which forage losses

caused by grasshoppers cannot be fully replaced by forage growth� The forage loss

predicted by a prototypical case must be adapted if the proportion of the lifespan

of the grasshoppers overlapping the critical period in the new case di�ers from that

in the prototypical case� This process� termed critical period adaptation� requires

determining the proportion of lifetime consumption occurring in the critical period

based on the developmental phases of the new and prototypical cases that fall within

the critical period and the proportion of lifetime consumption occurring in these

developmental phases� The forage loss estimate is then adjusted based on the featural

adaptation weight for the critical period and the di�erence in the proportion of lifetime

consumption in the critical period between the new case and prototypical case�

A graphic example of critical period adaptation is hown in Figure �� Because

grasshopper development in SubcaseA is ahead of that in Case
 �SubcaseA	s devel�

opmental phase on June �
 corresponds to Case
	s developmental phase on June ����

CARMA determines that Case
 applies to more of the critical period than SubcaseA

because it will only reach Day � of developmental phase � by the beginning of the

critical period �June ���� while SubcaseA will already reach Day � of developmental

phase �� CARMA uses a model of grasshoppers	 rate of consumption at each devel�

opmental phase to calculate the proportion of lifetime consumption occurring after

the beginning of the critical period and before the end of the critical period� For

example� only ����� of SubcaseA	s consumption occurs during the critical period�

whereas ����� of Case
	s consumption occurs within this period� The quantitative

feature di�erence for critical period adaptation is computed as a proportional di�er�

ence� therefore CARMA adjusts the initial consumption estimate by ����� � ����� �

����  ������ multiplied by the adaptation feature weight for critical period�

In summary� CARMA uses a model of grasshopper developmental phases� con�

sumption� and attrition� knowledge concerning the relative contribution of case fea�
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tures to consumption� and a model of a rangeland	s critical forage growth period in

adapting the cases in its library�

��� Forage Loss Estimation

After adaptation� the consumption predictions for each subcase �i�e�� populations

of grasshoppers with distinct feeding patterns� are summed to produce an overall

consumption estimate� In the given case� the sum of predicted consumption of the

two subcases is ��� ����� " ��
�� Because of variability resulting from the imprecise

nature of rangeland ecosystems� this prediction is converted to the qualitative range�

high� meaning that approximately �� to ���� of the available forage will be lost� An

interface window explaining estimated forage loss is shown in Figure �� It gives both

aggravating and mitigating factors �i�e�� factors tending to increase vs� reduce the

forage loss estimate��

The natural language explanation is produced using conventional template in�

stantiation techniques� First� the explanation generator creates the natural language

representation of pertinent qualitative feature values using simple lookup tables �e�g��

the text string for feature value high�mod is �moderately high��� The text strings

are then combined with the explanation template� For example� the template for the

�rst sentence in the forage loss explanation is�

� �From the information you have provided� it is estimated that the

grasshoppers will consume a � qualitative�forage�loss�string � percentage

of the forage available for the year or approximately � quantitative�forage�

loss�range�string �����

If the proportion of available forage that will be lost to grasshoppers and the

proportion needed for livestock �and wildlife� exceeds ���� of the forage available�

CARMA concludes that competition will occur� In this example� competition is

possible and the consultation should continue if the proportion of available forage

needed by livestock is greater than 
��� For example� if forage need is ���� the
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expected year�long competition should range from �� �i�e�� �
� " ��� � ���� to

��� �i�e�� ��� " ��� � ����� A typical interface window explaining estimated forage

competition is shown in Figure ��

��	 Determining Treatment Options

If there will be competition� CARMA applies a set of rules to determine what possible

treatment options are excluded by the conditions of the case� Some of the information

necessary for determining exclusion is already known from the case features �e�g��

the presence of grasshoppers in the �rst nymphal instar suggests an ongoing hatch�

thereby excluding malathion and carbaryl bait from consideration�� Other conditions

must be determined from further user input �e�g�� �Will it be hot at the time of

treatment�� If so� exclude malathion�� An interface window explaining the selection

of acceptable treatments appears in Figure �� The explanation includes the rules that

were used to exclude treatments� This explanation is also derived using standard

template�instantiation techniques�

��
 Treatment Recommendation

For each possible treatment option� CARMA provides estimates of the reduced prob�

ability of future reinfestation and current�year and long�term savings� From the

estimated savings� CARMA recommends the treatment or treatments that are most

economical� A typical treatment recommendation window including estimates of fu�

ture reinfestation and economic savings appears in Figure �� Note that this analysis

includes �no treatment� as an option�

����� Reduced Probabilities of Future Reinfestation�

CARMA uses Markov transitional probabilities for the infestation location �derived

from historical infestation history data collected by the USDA and synthesized by the

University of Wyoming Entomology Section� to calculate for each treatment type the
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total reduced probability of future reinfestation�

CARMA �rst determines whether the grasshoppers will begin laying eggs before

the treatment date� If the developmental distribution of the grasshoppers at treatment

is dominated by adults� CARMA determines that too many eggs will already be laid�

and no reduction in the probability of future reinfestation will result from treatment

because eggs are not a�ected by treatment� If few eggs will have been laid� CARMA

calculates the yearly reinfestation probabilities for each treatment type based on

the historical Markov transitional probabilities for as many years as the probability

of infestation with treatment is signi�cantly lower that the probability of infestation

without treatment �i�e�� until the bene�ts of treatment have ended�� The total reduced

probability of future reinfestation for each treatment is calculated by summing each

yearly di�erence between the probabilities of infestation without and with treatment�

Because the number of grasshoppers that may emerge in future years is often

not directly proportional to the number of eggs laid the current year �e�g�� under

ideal conditions� grasshoppers are capable of expanding from a low population on

year to a very high population the next�� transitional probabilities are adjusted only

slightly based on the e
cacy of treatments in reducing the number of eggs laid� The

transitional probabilities are reduced further for those treatments capable of preserv�

ing bene�cials� For example� treatments such as carbaryl bait are designed to be

consumed speci�cally by grasshoppers and are therefore unlikely to a�ect biological

control agents such as birds and insects� Conversely� sprays such as malathion blanket

an entire area and hurt bene�cials indiscriminately� A greater reduction in the tran�

sitional probabilities is made for treated infestations whose total area is quite large�

because treatment will tend to reduce the chance that grasshoppers from previously

untreated areas will migrate into the treated area�

����� Economic Analysis

For each possible treatment option� CARMA provides estimates of current�year and

long�term savings� Each analysis involves a range that indicates best to worst case

��



estimates �negative values indicate a loss�� A typical interface window explaining the

savings calculations appears in Figure ���

Current�year Savings� For each possible treatment option� CARMA estimates

the current�year savings as the di�erence between the value of forage in competition

saved by treating and the treatment cost� CARMA �rst computes the amount of

pre�treatment forage loss� This is done by projecting the developmental distribu�

tion of each subcase forward to the user�provided treatment date �often a week or

more from the current date�� In a manner similar to determining the percentage of

lifetime consumption occurring within the critical period� CARMA applies a model

of grasshoppers	 rate of consumption at each developmental phase to each subcase

to calculate the proportion of lifetime consumption occurring before the treatment

date� This proportion is used to scale the year�long forage loss estimate� resulting in

the pre�treatment loss� The pre�treatment forage loss estimates for each subcase are

summed to produce the total pre�treatment forage loss� Next� CARMA estimates the

amount of post�treatment forage loss without treatment by subtracting pre�treatment

forage loss from total forage loss� For example� if total forage loss is estimated to be

�� to ����� and pre�treatment forage loss is estimated to be ��� to ����� then the

post�treatment forage loss will be ���� to ������

For each option� CARMA estimates the amount of post�treatment forage loss with

treatment according to the expected e
cacy of the treatment and the post�treatment

forage loss without treatment� For example� the insecticide carbaryl formulated as

a baitbait is usually �� to ��� e�ective� If the estimated post�treatment forage loss

without treatment is ���� to ������ then at best carbaryl bait should prevent ���

of the ����� loss� and at worst prevent ��� of the ����� loss� resulting in a ���� to

����� post�treatment forage loss�

CARMA calculates the year�long forage loss for each option by summing pre�

and post�treatment forage loss� Year�long competition resulting from a treatment

option is calculated by comparing year�long forage loss resulting from the option and

forage need� The proportion of forage in competition saved is simply the proportion of

��



forage in competition without treatment minus the proportion of forage in competition

with treatment� For example� if pre�treatment forage loss is ��� to ���� and post�

treatment forage loss is ���� to ������ the year�long forage loss for the option is ���� to

������ Given a forage need of ���� the year�long competition with treatment ranges

from ����� " ��� � ���  ����
 to ����� " ��� � ���  ����� which is less than

zero� thereby preventing competition� If the year�long forage in competition without

treatment is �� to ���� and the treatment option will result in no competition� then

the expected forage in competition saved by treating is �� to ����

With the per�unit forage value and range value estimates provided by the user�

CARMA estimates the current�year savings for an option to be the value of forage

in competition that is saved minus the cost of the treatment� In this example� the

per�unit forage value is ����AUM �i�e�� an animal unit month� the amount of forage

necessary to support a cow and calf for one month� and the estimated range value �or

productivity� is ���� acres�AUM� Therefore� the current�year savings ranges from�

���� ���

AUM
� AUM

��acres
 �����

acre

to

���� ���

AUM
� AUM

�acres
 �����

acre

Long�term Savings� CARMA calculates the savings for future years for each treat�

ment type as the value of year�long �i�e�� total� forage in competition without treat�

ment �taken from the �rst year calculations� times the total reduced probabilities of

future reinfestation� Based on the current�year savings� CARMA recommends the

treatment that is estimated to save the most under a worst�case scenario and the

treatment that is estimated to save the most under a best�case scenario� Usually� the

worst and best scenarios produce the same recommended treatment� Following the

treatment recommendation� the consultation is complete�
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� Learning Match and Adaptation Weights

CARMA uses two sets of weights in case�based reasoning� match weights �used in

the assessment of similarity between cases� and featural adaptation weights �used to

adapt the consumption predicted by the best matching prototypical case in light of

any featural di�erences between it and the subcase�� General domain knowledge� such

as the identifying characteristics and developmental phases of grasshoppers� can be

provided by the domain expert� By contrast� match and featural adaptation weights

must be acquired by the system itself�

As indicated above� match weights are set by determining the mutual information

gain between case features and qualitative consumption categories in a given set of

training cases�

Featural adaptation weights are set by a hill�climbing algorithm� AdaptWeights�

that incrementally varies adaptation weights !A to minimize the root�mean�squared

error �RMSE��
vuut��n

nX
i��

�PFL�Ci� P�M� !A�� ExpertPred�Ci���

for prototypical case library P and match weights M � where PFL�Ci� P � M � !A� is

CARMA	s predicted forage loss and ExpertPred�Ci� is the expert	s prediction of

consumption for each training case Ci� The algorithm for AdaptWeights is as follows�

function AdaptWeights�T � P � M�

� I � initial increment

� Dmin � minimum improvement threshold

� Imin � minimum increment threshold


 !A � initial list of global adaptation weights

� D� � RMSE�T�P�M� !A�

� D � �

� loop until �I � Imin� do

� loop until �jD� �Dj � Dmin� do
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� D � D�

�� � � the change to an element of !A by I for which

RMSE�T�P�M��� !A�� is least

�� D� � RMSE�T�P�M��� !A��

�� if �D� � D� then !A � �� !A�

�� else D� � D

�
 I � I��

�� return !A

Separate adaptation weights are computed for each grasshopper overwintering

type for the same eight case features� precipitation� temperature� range value� infes�

tation history� average developmental phase� density� feeding type� proportion of lifetime

consumption in the critical period� and total area infested� In computing the featu�

ral adaptation weights� qualitative case features �such as precipitation  Dry� are

converted into quantitative values based on the position of the value in an ordered

qualitative feature value list� An adaptation feature di�erence is computed as the

di�erence between the quantitative feature values of the two cases� The consumption

prediction of the matching prototypical case is adjusted by the sum of the adaptation

feature di�erences multiplied by the adaptation weights for each feature� CARMA

can learn featural adaptation weights in either of two modes� global� in which a single

set of weights are acquired for the entire entire case library or case�speci�c� in which

separate weights are acquired for each prototypical case�

� Evaluating Model�Based Adaptation

The design of CARMA	s forage consumption component was based on the hypothesis

that an integration of model�based and case�based reasoning can lead to more accurate

forage consumption predictions than the use of either technique individually� This

hypothesis is based on the observation that neither the causal model nor the empirical

data available for rangelands are individually su
cient for accurate prediction� To
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test this hypothesis� we separated CARMA	s empirical and model�based knowledge

components� tested each in isolation� and compared the results to the performance

of the full CARMA system under both global and case�speci�c adaptation weight

modes�

The evaluation was complicated by the absence of empirical data against which

to measure CARMA	s predictions� We therefore turned to expert human judgments

as an external standard� To obtain a representative sample of expert opinions� we

sent questionnaires to �� entomologists �including pest managers� recognized for their

work in the area of grasshopper management and ecology� Each expert received ��

cases randomly selected from a complete set of �� hypothetical cases set in northern

Wyoming� The descriptions of the �� cases contained at least as much information as

is typically available to an entomologist from a rancher seeking advice� The question�

naire asked the expert to predict quantitative forage loss and the most appropriate

course of action� A total of �� recipients of the questionnaire responded� There was a

very wide variation �from �� to ���� in consumption predictions of the respondents

over the set of �� cases� However� there appeared to be a much higher degree of

consistency among the eight experts from Wyoming� so in the experiments described

below we restricted our attention to the eight sets of responses fromWyoming experts�

	�� Experimental Design

Each predictive method was tested using a series of leave�one�out tests in which a set

of cases �S� from a single expert was split into one test case �C� and one training set �S

� C�� The methods were trained on the forage loss predictions of the training set and

tested on the test case� This method was repeated for each case within the set �S�� The

forage loss predictions �between �� and ����� represent the proportion of available

forage that would otherwise be available for livestock� but will instead be consumed

by grasshoppers� CARMA was tested using a protocol under which each set of train�

ing cases was used as CARMA	s library of prototypical cases� This protocol is im�

plemented in LeaveOneOutSpeci�cTest and LeaveOneOutGlobalTest� which perform
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the leave�one�out tests for the speci�c and global adaptation weighting schemes� re�

spectively� Both procedures call AdaptWeights� the hill�climbing algorithm described

above� LeaveOneOutSpeci�cTest calls AdaptWeights with a prototypical case library

containing only one case�

function LeaveOneOutSpeci�cTest�T �

� for each case Ci�T do

� P � T � Ci �prototypical cases

� M � global match weights for set P

according to info� gain


 for each prototypical case Pj�P do

� T � P � Pj �training set

� Pj�A�� AdaptWeights�T � fPjg� M�

� Di � �PredictForageLoss�Ci� P � M�

� ExpertPred�Ci��
�

� return �
q
Avg�D��

function LeaveOneOutGlobalTest�T	

� for each case Ci�T do

� P � T � Ci �prototypical cases

� M � global match weights for set P

according to info� gain


 G � AdaptWeights�P � P � M�

� Di � �PredictForageLoss�Ci� P � M � G�

� ExpertPred�Ci��
�

� return �
q
Avg�D��

CARMA	s empirical component was evaluated by performing leave�one�out�tests

for CARMA	s forage consumption module with all model�based adaptation disabled�

CARMA	s forage consumption module with model�based adaptation disabled is termed
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factored nearest�neighbor prediction �factored�NN�� because under this approach pre�

diction is based simply on the sum of nearest neighbor predictions for each subcase�

Two other empirical methods were evaluated as well� decision�tree induction using

ID���Qui��� and linear approximation using QR factorization �Hag��� to �nd a least�

squares �t to the feature values and associated predictions of the training cases�

The predictive ability of CARMA	s model�based component in isolation was eval�

uated by developing a numerical simulation based on CARMA	s model of rangeland

ecology� This simulation required explicit representation of two forms of knowledge

implicit in CARMA	s cases� the forage per acre based on the range value of the

location� and the forage typically eaten per day per grasshopper for each distinct

grasshopper overwintering type and developmental phase� The steps of the numerical

simulation are as follows�

�� Project each grasshopper population back to beginning of the growing season�

�� Simulate the density and developmental phases for each overwintering type

through the end of the critical period growth season based on the precipitation

and temperature given in the case�

�� Calculate the forage eaten per day per acre based on the grasshopper density

per acre and the forage eaten per day per grasshopper for each overwintering

type and developmental phase as a�ected by temperature�


� Convert the total forage consumed to the proportion of available forage con�

sumed based on the forage per acre�

The e�ect of temperature on consumption �as a result of changing metabolic rates�

was represented by multiplying a coe
cient �determined from a lookup table indexed

by temperature� by the forage eaten per day per grasshopper for each overwintering

�ID� classi�ed cases into �	 qualitative consumption categories representing the midpoints 
�� �	�

��� ��� � ��
 of �	 equally sized qualitative ranges� ID��s error was measured by the di�erence between

the midpoint of each predicted qualitative category and the expected quantitative consumption value�
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type� The numerical simulation was trained by hill�climbing on temperature�based

coe
cients to maximize the predictive accuracy of the training cases�

	�� Results

The accuracy of each approach was tested using leave�one�out testing for each of

the eight Wyoming Expert Sets and for a data set consisting of the median of the

predictions of the Wyoming experts on each case� The results� which appear in

Table �� include the root�mean�squared error for each of the methods�

The results of the integration experiment provide initial con�rmation for the hy�

pothesis that integrating model�based and case�based reasoning through model�based

adaptation leads to more accurate forage consumption predictions than the use of ei�

ther technique individually� The lowest root�mean�squared error rate was obtained

by CARMA�speci�c� On the Wyoming Expert Sets� the root�mean�squared error rate

was ���� for CARMA�speci�c and �
��� for CARMA�global� The root�mean�squared

error rate was higher both for the empirical approaches#����� for factored�NN�

�
��� for ID�� and ����� for linear approximation#and for the purely model�based

approach#������ CARMA�speci�c and CARMA�global were also more accurate

than the alternative methods on the Wyoming median set� although linear approxi�

mation was only slightly less accurate� The initial con�rmation of the hypothesis that

integrating model�based and case�based reasoning through model�based adaptation

leads to more accurate forage consumption predictions than the use of either tech�

nique individually is tentative because the low level of agreement among experts and

the absence of any external standard give rise to uncertainty about what constitutes

a correct prediction� However� this validation problem appears to be an inherent

property of biological domains such as rangeland pest management�

Consumption prediction can be viewed as approximating a function from derived

case features to consumption predictions �a consumption function�� Prototypical

cases constitute representative points in feature space for which function values are

known� The prototypical cases can be used to induce a representation of the function
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as a decision tree �e�g�� ID�� or a numerical function �e�g�� linear approximation�� The

poor performance of ID� and linear approximation suggests that the biases of these

inductive methods are poorly suited to the consumption prediction task� The high

performance of linear approximation on the Wyoming median set ������� suggests

that taking the median of the predictions for the expert sets causes the complex

consumption function curve to be drastically �attened� with the result that it is

much more easily predicted by linear approximation�

Numerical simulation can be used to derive individual values for the function�

However� the incompleteness of available models of rangeland ecology limits the

accuracy of this approach� A pure nearest�neighbor approach implicitly assumes

that the consumption function is constant in the neighborhood of prototypical cases�

CARMA	s model�based adaptation approach uses a model of rangeland ecology to

approximate the consumption function in the neighborhood of individual prototypical

cases� For example� projection consists of simulation through the temporal interval

necessary to align the developmental phases of two cases� Although the model may

be insu
cient in itself for accurate consumption prediction� it may greatly improve

the accuracy of nearest�neighbor prediction�

In summary� the tests of CARMA	s forage consumption prediction component

provide an initial con�rmation of the hypothesis that integrating model�based and

case�based reasoning can lead to more accurate forage consumption predictions than

the use of either technique individually�

� Status

On June ��� ����� CARMA was distributed to the University of Wyoming Coopera�

tive Extension o
ces and Weed and Pest District O
ces in each of the �� Wyoming

counties� The �elded version consists of CARMA�speci�c using a case library con�

sisting of the Wyoming median set� CARMA is available free of charge for non�

commercial purposes and can be down�loaded from

��



http���ai�uwyo�edu�$karl�carma

CARMA is implemented in Allegro CL�PC and runs under Windows ��� or Windows�

�� on 
�� or higher processors with a minimum of �MB of RAM and ��MB of swap

space�

	 Related Work

Several previous research projects have investigated the bene�ts of integrating case�

based reasoning with model�based reasoning� However� these projects have generally

assumed the existence of a correct and complete causal model� For example� CASEY

�Kot��� performed diagnosis using model�based reasoning to assist both case matching

and case adaptation� However� CASEY presupposed both the existence of a complete

causal theory of heart disease and complete explanations of each case in terms of that

theory� Goel	s use of device models to adapt design cases also presupposed that the

device models are complete and correct �Goe���� Similarly� Rajamoney and Lee	s

prototype�based reasoning �RL��� presupposed a complete and correct �though not

necessarily tractable� causal model�

Feret and Glascow �FG��� described an alterative approach under which model�

based reasoning is used for �structural isolation� �i�e�� identi�cation of the structural

components of a device that probably give rise to the symptoms of a fault�� Cases

are indexed by these tentative diagnoses� which are then re�ned using case�based

reasoning� This approach� while appropriate for diagnosis� is ill�suited for behavioral

prediction in the absence of faults�

CARMA	s technique of model�based matching and adaptation represents an al�

ternative approach to integrating CBR and MBR in domains characterized by an

incomplete causal model�
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 Conclusion

This paper has described a technique for integrating case�based reasoning with model�

based reasoning to predict the behavior of biological systems characterized both by

incomplete models and insu
cient empirical data for accurate induction� This tech�

nique is implemented in CARMA� a system for rangeland pest management advising�

An empirical evaluation provided con�rmation of the hypothesis that integrating

model�based and case�based reasoning through model�based adaptation can lead to

more accurate forage consumption predictions than the use of either technique individ�

ually� We believe that the approach to model�based adaptation embodied in CARMA

is appropriate for other domains in which empirical and model�based knowledge are

individually insu
cient for accurate prediction� such as predictive tasks involving

biological� ecological� and other complex natural systems�
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Case
 New case Case


SubcaseA SubcaseB after projection

Overwintering type nymph nymph egg egg

Feeding types grass ��� grass ��� grass ���� grass ���

mixed ��� mixed ��� mixed ���

Average phase ��� ��� ��� ���

Density ���� ���� 
�� �
��

Proportion of lifetime ���� ���� ���
 ����

consumption in critical period

Date June � June �
 June ��

Precipitation normal dry normal

Temperatures normal cool normal

Infest� history high high high

Range value low moderately�high low

Total area infested ����� ���� �����

Forage loss ��� �high� � ��� �high�

Table �� Case examples�

CARMA Empirical Only Model�Based Only

Speci�c Global Factored� ID� Linear Numerical

weights weights NN appr� simulation

Wyoming expert sets ���� �	�
 
��� �	�� 
��
 
��


Wyoming median set ��� ���� 

�� ���
 ���� 
���

Table �� Root�mean�squared error �in �� for leave�one�out�test results�

��


