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Abstract—Incremental methods for detecting community struc-
ture are necessary when a graph’s size or node-expansion cost
makes global community-detection methods infeasible. Previous
approaches to local community detection, which conflate edges
between vertices in the immediate neighborhood of a partially-
known community with edges to more distant vertices, often
select vertices in an order that is suboptimal with respect
to the actual community structure. This paper describes two
new algorithms—MaxActivation and MaxDensity—whose vertex-
selection policies focus on edges among the vertices in the
partially-known community and its immediate neighborhood,
ignoring edges to more distant vertices. In an empirical evaluation
on a collection of natural and artificial graphs of varying degrees
of community cohesion, the relative performance of alternative
algorithms depended upon the degree distribution of each graph.
These results demonstrate that the selection of an algorithm
for incremental community detection should be guided by the
characteristics of the graph to which it will be applied.

I. I NTRODUCTION

Many complex systems—such as power grids, nervous sys-
tems, sports leagues, collaborating researchers and musicians,
and the World Wide Web—are amenable to representation as
a graph consisting of vertices (representing entities) andedges
(representing relationships or events). Meaningful components
of such systems often correspond to communities within the
associated graph, that is, to subgraphs whose vertices are more
highly connected to each other than to vertices outside the
community. Detection of such communities can therefore be
a powerful tool for understanding complex systems.

Numerous algorithms of varying complexity and accuracy
have been developed to identify communities in graphs. One
popular approach is to search for a partition of the graph
that optimizes a global utility function, such as modularity
[New04]. As a practical matter, however, many graphs are only
partly accessible, either because the entire graph is too large
to fit in memory or because the cost in time or other resources
of expanding all vertices in the entire graph is prohibitive. In
such cases, it is not feasible to determine the globally optimal
community structure. Instead, the objective of the search must
be limited to determining the local community structure in the
neighborhood of a query vertex.

The process of local community search typically consists
of incrementally adding individual vertices to a community
initialized with a query vertex, sometimes followed by, or

interleaved with, a winnowing step that removes vertices
that detract from the community structure [Cla05], [LWP08],
[Bag08], [CZR09]. Any implementation of this process re-
quires policies for (1) selection (how to choose the next vertex
to add to the community), (2) termination (when to stop adding
vertices), and (3) filtering (which vertices, if any, to remove
from the community).

An ideal vertex selection policy is that it choose vertices in
decreasing order of their centrality (for a given centrality mea-
sure) in the actual target community that contains the query
vertex, starting with the most central. Selecting verticesin
this order would optimize solution quality because a solution
containing thek most central vertices to the actual community
is preferable,ceteris paribus, to a solution consisting ofk
vertices that are less central to the community, regardlessof k.
Intuitively, one vertex-selection policy is preferable toanother
if, for k no greater than the size of the actual community,
the k vertices selected by the first policy collectively have
higher centrality in the actual community than those selected
by the second. This paper formalizes this intuition, proposing
a criterion for local community detection,normalized utility-
weighted recall(NUWR), based on node-betweenness central-
ity and modularity.

The focus of this work is on improving vertex selection, in-
dependent of choice of termination or filtering policies. There
are two justifications for this focus. First, it is typicallyeasier
to optimize individual design elements separately than to try to
optimize all simultaneously. Second, termination and filtering
policies are necessarily dependent on the characteristicsof the
selection policy. The more accurate the selection policy, the
fewer the vertices that must be selected to obtain all vertices
in a given community and the fewer the vertices that must be
filtered to remove all nodes not in that community.

This paper proposes two new algorithms for local com-
munity detection that use selection policies different from
those of previous local community detection algorithms in
that they select each successive vertex based only on edges
to the partial community and its immediate neighbors. For
some classes of graphs, this approach leads, counterintuitively,
to better performance than previous approaches that take into
consideration edges to vertices more than one step from the
current community.



Section II reviews previous approaches to local community
detection algorithms and describes two introspective algo-
rithms. A criterion for local community detection is proposed
in Section III. Section IV sets forth a comparative evaluation
on a set of standard natural and artificial graphs.

II. A LGORITHMS FORLOCAL COMMUNITY DETECTION

Many local community detection algorithms share a com-
mon schema that at each step of the algorithm assigns each
vertex in the graph to one of three sets:

• C, the Community under construction, which is typically
initialized with the query vertex.

• N , Neighboring vertices not inC but sharing an edge
with at least one element ofC.

• U , Unexplored vertices,i.e., those not adjacent toC.

Optionally, C can be further partitioned into a boundary,
Cboundary, consisting of every node inC that has at least one
edge to a node inN , andCcore, which consists of the vertices
in C that have no edges toN , i.e., Ccore = C−Cboundary. The
local community detection algorithm schema is as follows:

Algorithm 1 : Local-community structure algorithm
schema
C ← {queryV ertex}
N ← neighbors(queryV ertex)
while (!terminationCriterion)do

select the ‘best’ vertexn ∈ N
C ← C ∪ {n}
N ← (N − n) ∪ neighbors(n)− C

end
return filter(C)

Local community detection algorithms differ in their crite-
rion for selecting the ‘best’ vertexn ∈ N . Note that under
this schema, all neighbors of each vertexn ∈ N are known,
whereas neighbors of vertices inU are in general not known.
Edges are assumed to be undirected.

A. Previous Local Community Detection Algorithms

The vertices in a community typically have more edges
to vertices in the same community (internal edges) than to
vertices outside the community (external edges). Conversely,
vertices outside the community typically have more external
than internal edges. Most local community detection algo-
rithms use heuristics to try to estimate the relative number
of internal and external edges for the actual community
based on the current partial community under construction by
the algorithm. Unfortunately, such estimates are necessarily
approximate if the partial community is incomplete. Clauset
[Cla05] proposes a vertex selection criterion under which the
vertex is selected that makes the largest increase (or smallest
decrease) inlocal modularity, R = I

T
, whereT represents the

number of edges incident toCboundary (i.e., including both
edges between pairs of nodes inC and those connecting a node
in C to a node inN ), andI represents the number of edges

Fig. 1. Verticesv1, v2, andv3 are candidates for addition toC.

incident toCboundary that are internal toC (i.e., that connect
pairs of nodes inC). The intuition behind maximizingR is that
R “is directly proportional to sharpness of the boundary given
by Cboundary.” The procedure “avoids crossing a community
boundary until absolutely necessary” [Cla05].

A second selection criterion, termed outwardness, was pro-
posed in [Bag08]. The outwardness of a vertexv, Ωv, is:

Ωv =
(koutv − kinv

kv
) (1)

wherekv is the degree of vertexv, koutv is the number of edges
from v to vertices outside of the communityC, (i.e., to N or
U ), andkinv is the number of edges fromv to vertices inC.
At each stage, the vertexv ∈ N with the lowest outwardness
is selected to be moved toC, breaking ties at random.

A third selection criterion, based on [LWP08]1 is to choose
the vertex that maximizesM = ind(C)

outd(C) , the ratio ofind(C),
the number of edges connecting pairs of nodes inC, to
outd(C), the number of edges connecting nodes inC to nodes
outside ofC.

These three selection policies—(l) maximizing local mod-
ularity (L), (2) minimizing outwardness (Ωv), and (3) max-
imizing M—have in common that they fail to distinguish
edges internal toN from edges connectingN to U . This
can sometimes lead a node that is very likely to be of low
centrality to be chosen before a node that might be of higher
centrality.

Consider, for example, verticesv1, v2, and v3 shown in
Figure 1. Vertexv2 may have higher centrality in the actual
community thanv1 or v3 because there are multiple paths
from v2 into C through edges tovi andvj , whereas no such
alternative paths toC are possible forv1, and no equally
short alternative paths exist forv3. However,v2’s outwardness

1The algorithm of [LWP08] considers eachn ∈ N in ascending order
of degree, adding to the community eachn whose addition toC would
increaseM . Each element ofC whose removal would increaseM without
disconnectingC is then removed. These two steps are repeated until no new
vertices are added. The procedure described here differs from the algorithm of
[LWP08] in that it selects the node that maximizesM , rather than the lowest
degree node for which∆M > O, and in that it is purely a node-selection
policy, with no node filtering.



( 2−2
4 = 0) is higher than the outwardness ofv1 ( 0−2

2 = −1)
and is the same as the outwardness ofv3 ( 2−2

4 = 0). Moreover,
local modularity would be higher after addingv1 ( I+2

T+0 ) than
after addingv2 or v3 ( I+2

T+2 ). Finally, addingv1 would make

M = ind(C)+2
outd(C)−2 , which is higher thanM after addingv2

or v3, ind(C)+2
outd(C)+0 . Thus, under all three selection policies,v1

would be selected beforev2, andv2 andv3 would be treated
identically even thoughv2 is more strongly connected toC
than isv3.

The observation that maximizing local modularity, minimiz-
ing outwardness, and maximizingM can all sometimes lead
low-centrality vertices to be selected before potentiallyhigher-
centrality vertices suggests that better performance might be
obtained by selection criteria that distinguish edges internal to
N from those between vertices inN and vertices inU . Two
such approaches to such selection criteria are described below.

The first is spreading activation, in which excitation is
propagated along links from the query vertex to each node
that has been expanded. The noden ∈ N having the highest
activation is selected to be added toC on the assumption that
activation represents the strength of the connections through
the graph from the query vertex ton. A second approach
is density-based selection, in which the noden ∈ N that
contributes to the most highly interconnected community is
selected at each step, regardless of the number of links from
n to U . These two approaches areintrospectivein the sense
that they focus on vertices close toC, ignoring links toU .

B. Introspective Community-Detection Algorithms

Spreading Activation
Numerous approaches to spreading activation have been ex-
plored in the history of computer science,e.g., [CL75],
[Cre97].MaxActivationis a particularly simple form of spread-
ing activation appropriate for incremental community detec-
tion.

In MaxActivation, activation is propagated outward from the
query vertex. Each node’s activation is the sum of activations
received along each edge from a node of equal or lesser
distance to the query vertex. The activation received along
an edge is the sender’s activation multiplied by a global
edge-attenuation factor. To avoid ordering effects, updates of
all vertices at a given distance from the query vertex are
performed concurrently.

In the MaxActivation algorithm for selecting the highest-
activation vertex, set forth below in Algorithm 2, the symbol
δ represents the attenuation factor,0.0 < δ ≤ 1.0. Activation
of vertices can be calculated incrementally after each update
to C, but for simplicity of presentation the algorithm is shown
below as applied in batch mode to all the vertices inC ∪N .

If δ < 1
argmax

v∈G
(deg(v)) , then the activation of each vertex

v is guaranteed to be a monotonically decreasing function of
the path length fromv to the query vertex. MaxActivation
doesn’t permit any activation to flow from vertices farther
from the query vertex to vertices closer to the query vertex
and permits activation between vertices at the same distance

Algorithm 2 : MaxActivation Node Selection Algorithm
queryVertex.activation← 1.0
currentPly← {queryVertex}
previousPly← φ
while (currentPly 6= φ) do

nextPly← {v | v ∈ (C ∪ N) ∧ ∃ edge(v,w)∧ w ∈
currentPly∧ v /∈ currentPly∧ v /∈ previousPly}
foreach v ∈ nextPlydo

v.activation← 0.0
v.tmp← 0.0

end
spread activation from current to
next ply
foreach {edge(w,v)| w ∈ currentPly∧ v ∈ nextPly}
do

v.activation += w.activation∗δ
end
spread activation between members of
nextPly
foreach {edge(w,v)| w, v ∈ nextPly }do

v.tmp += w.activation∗δ
w.tmp += v.activation∗δ

end
sum activation from both sources
foreach v ∈ nextPlydo

v.activation += v.tmp
end
update plies
previousPly← currentPly
currentPly← nextPly

end
return argmaxn∈N (n.activation)

from the query vertex to propagate only one step.

Density-Based Selection
An alternative introspective selection criterion is to select
the n ∈ N that makes the community as interconnected as
possible. MaxDensity, shown below in Algorithm 3, is an
approach to density-based selection that uses a simple criterion
for this selection: choosing then ∈ N that has the most edges
to vertices inC. Ties are broken by choosing then with the
most edges to other vertices inN , and any remaining ties are
broken by selecting the n with the shortest path to the query
vertex.

III. E VALUATION CRITERIA FOR INCREMENTAL LOCAL

COMMUNITY DETECTION

In the absence of knowledge of the actual community
structure, it is difficult to evaluate the output of a local
community detection algorithm. However, in cases in which
the actual community structure is known, local community
detection algorithms can be evaluated by comparing their
output to the actual structure. For example, a local community
detection algorithm’s selection policy can be evaluated by



Algorithm 3 : MaxDensity Node Selection Algorithm

D ← {n | argmaxn∈C(|{edge(v,n), v∈ C } |) }
if (|D| > 1) then

D ← {n | argmaxn∈D(|{edge(v,n), v∈ N } |)}
if (|D| > 1) then

D ← {n | argminn∈D pathlength(n, query)}
end

end
return random member of D

comparing the order in which vertices are added under the
policy to the optimal order. Given an oracle that provides the
actual community,C ′, and a utility function,util, defined over
all community vertices (such as node betweenness), the quality
of a return set (i.e., proposed community),C, consisting of
k vertices selected under a given selection policy, can be
measured as the sum of the utilities of the vertices in the
return set,

∑
v∈C util(v). This sum can be normalized onto

the [0.0 .. 1.0] interval by dividing it by the sum of the
k highest utility vertices of the community. The resulting
measure of solution quality is termedNormalized Utility-
Weighted Recall(NUWR). The Normalized Utility-Weighted
Recall of communityC with respect to actual communityC ′,
NUWR, is shown in equation 2:

NUWR =

∑
v∈C util(v)

argmaxS⊆C′,|S|=min(|C|,|C′|)

∑
v∈S util(v)

(2)
NUWR formalizes the intuition that if two communities differ
only in a single pair of vertices with different utilities, the
solution with the higher utility node is preferable to the partial
community with the lower utility node. Similarly, if every
node in the target community has identical utility, then all
partial communities consisting ofk community vertices will
have identical NUWR, consistent with the intuition that all
such partial communities are equally good. Local community
extraction algorithms can be compared by comparing the
NUWRs of the communities returned by each algorithm when
search is terminated,e.g., whenk vertices have been expanded.

Alternative evaluation metrics that have been applied to
community detection are less informative when applied to
vertex-selection policies. F-measure (the harmonic mean of
recall and precision) and the Rand index [Ran71], [HA85] use
unweighted counts, so they don’t distinguish partial communi-
ties consisting of high centrality vertices from those consisting
of low-centrality vertices. Incorporating precision intoNUWR
would not provide any additional information because, for
fixed k and actual community size|C ′|, precision and recall
express the same information,i.e., under these circumstances,
precision = |truePositives|

|k| , and recall =|truePositives|
|C′| , so

precision =
recall ∗ |C ′|

k
(3)

In the evaluation described below, the utility of each vertex in
a community was calculated as the vertex’s betweenness cen-

trality [WF94] in the subgraph that consists only of community
vertices and edges (i.e., excluding non-community vertices and
edges). Utility of zero was assigned to nodes outside of the
community.

IV. EMPIRICAL EVALUATION

The accuracies of the local community detection algorithms
described in Section II were compared on natural (social,
cultural, and biological) graphs described in previous com-
munity detection research and on artificial graphs. In each
trial, a query vertexs was randomly selected from the graph,
and the canonical communityC ′ for which s ∈ C ′ was
retrieved, together with the node-betweenness of each node
in C ′, as calculated by applying the Jung2 implementation
of node betweenness to the subgraph consisting of the com-
munity’s nodes and edges. Each algorithm was then invoked
on the graph withs as the query vertex and a maximum
community size of|C ′| = k as a termination condition.
The NUWR was calculated for thek-element set of vertices
returned by the algorithm. An NUWR of 1.0 would mean that
every community vertex, and no non-community vertex, was
returned by the algorithm, whereas an NUWR of 0.0 would
mean that no community vertices were found. One thousand
trials were performed for each algorithm on each graph. In
MaxActivation, the attenuation factor,δ, was set to 0.05.

A. Natural Graphs

A number of standard social, cultural, and biological graphs
have been described in the community-detection literature. The
following data sets were used in the first experiment:

• The Western US Power Grid [4941 vertices, 6594 edges]
[WS98].

• Network Science. A co-authorship network of scientists
working on network theory and experiments [1589 ver-
tices, 2742 edges] [New06].

• Word Adjacencies. Adjacency network of common ad-
jectives and nouns in the Novel David Copperfield by
Charles Dickens [112 vertices, 425 edges] [New06].

• Les Miserables. Co-appearance network of characters in
the Victor Hugo novel Les Miserables [77 vertices, 254
edges] [Knu93].

• The neural network of the nematode C. Elegans [297
vertices, 2359 edges] [WS98].

• Zachary’s karate club [34 vertices, 78 edges] [Zac77].
• Dolphin social network. A social network of frequent

associations among 62 dolphins in a community living off
Doubtful Sound, New Zealand [62 vertices, 159 edges]
[LSB+03].

• Jazz. A network of jazz musicians who have performed
together [198 vertices, 2742 edges] [GD03].

• American college football. A network of America football
games between Division IA colleges during the regular
Fall 2000 season [115 vertices, 616 edges] [GN02].

2http://jung.sourceforge.net/
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Fig. 2. Degree distribution for the Western US power grid network.

The canonical community structure of each graph was deter-
mined using the [New04] algorithm, which finds the highest-
modularity graph partition in the dendrogram generated by
greedy agglomerative clustering, where at each iteration the
pair of clusters is joined that results in the greatest increase,
or lowest decrease, in modularity.3

B. Artificial Graphs

A common data set for testing community-extraction algo-
rithms consists of random networks of 128 vertices divided
into 4 equal-sized communities with average vertex degree of
16 [NG04], [MC07], [Bag08]. In experiment 2, the average
proportion of edges connected to other vertices in the same
community (internal edge proportion) was 0.67 (weak com-
munity structure), 0.83 (moderate community structure), and
0.9 (strong community structure). All communities were of
size 32; thus,k was equal to 32 in each trial.

C. Network Degree Distributions

The degree distribution of the nine natural and three artificial
graphs described above differ widely. For example, Figure 2
shows vertex frequency as a function of vertex degree for the
Western US Power Grid network. This distribution has a heavy
tail suggesting a power-law or exponential distribution. The
degree distributions of the Network Science, Les Miserables,
and Word Adjacencies networks display a similar heavy tail.

By contrast, the degree distribution of the random graphs
is more symmetric, suggestive of the normal distribution to

3The highest modularity partition of a graph does not necessarily cor-
respond to the actual community structure [FB07], and alternative metrics
sometimes lead to better community structure ([MC07], [Bra08],[KER08].
However, modularity is the best-known community-structure criterion, so
for reproducibility of the results described here, the partition that globally
optimizes modularity was chosen as the canonical community structure for
the natural and artificial graphs.
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Fig. 3. Degree distribution for a network of jazz musicians.
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Fig. 4. Degree distribution of the Western US power grid plotted with log-log
axes. The fit of this curve to a linear regression line hasR2 = 0.881.

be expected of a random graph. The degree distributions of
the remaining graphs, typified by the Jazz network shown in
Figure 3, are harder to characterize, with little resemblance
either to normal or heavy-tailed distributions.

One way to characterize the differences among these graphs
is suggested by the convention of plotting degree distributions
on log-log graphs. Graphs whose degree distributions are
heavy-tailed,i.e., that are well-approximated by power-law
or exponential functions, typically appear to be linear when
graphed in this fashion. If linear regression is performed on



Graph power netsci adjnoun lesmis c.elegans dolphin zachary jazz football
R2 0.881 0.821 0.669 0.646 0.5154 0.478 0.291 0.153 0.116

MaxM 0.636 0.846 0.445 0.706 0.776 0.837 0.890 0.818 0.738
MaxR 0.324 0.800 0.380 0.708 0.660 0.614 0.606 0.722 0.292
MinOmega 0.492 0.830 0.290 0.539 0.359 0.545 0.527 0.349 0.331
MaxDensity 0.647 0.856 0.419 0.635 0.576 0.768 0.766 0.807 0.826
MaxActivation 0.702 0.885 0.538 0.727 0.669 0.824 0.826 0.803 0.733

TABLE I
MEAN NUWR IN 1000TRIALS FOR 5 SELECTION POLICIES APPLIED TO9 SOCIAL, CULTURAL , AND BIOLOGICAL GRAPHS NETWORKS.

Fig. 5. R2 statistic for linear regression of log-log degree distribution.

the log of the distribution values, a good fit will be obtained
if the distribution is exponential or power-law, but the fit will
be poor for other distributions, such as linear or normal. For
example, the log-log plot of the degree distribution for the
Western US Power Grid network, shown in Figure 4, is nearly
linear, withR2 = 0.881.

Figure 5 shows the least-squares linear fit of the log-log
degree distributions of the 9 natural and 3 artificial graphs.
R2 is from 0.881 to 0.646 for the four heavy-tailed networks,
but is less than 0.04 for two of the random graphs and is in
between for the remaining networks.4

D. Experiments

The first experiment evaluated the ability of each algorithm
to find the same community as would be found through glob-
ally maximizing modularity. MaxM, MaxR, and MinOmega
are instantiations of the local community structure schema
(shown in Algorithm 1, above) that maximize M, maximize R,
and minimizeΩ (outwardness), respectively, with no filtering.
MaxR and MinOmega are equivalent to the algorithms of
[Cla05] and [Bag08], respectively, whereas MaxM differs from
the algorithm [LWP08] in that (1) MaxM selects the node that
maximizesM , breaking ties in favor of the lowest degree node,
rather than the lowest degree node for which∆M > O and
(2) MaxM performs no node filtering.

4Clauset et al. [CSN09] describe a procedure for fitting degree distributions
to a power-law function and provide code for this procedure at http://www.
santafe.edu/~aaronc/powerlaws/. Under this procedure, none of the 12 graphs
has a statistically significant fit to a power-law distribution.

proportion internal nodes 0.67 0.83 0.90
R2 0.030 0.184 0.018

MaxM 0.789 0.892 0.936
MaxR 0.413 0.345 0.355
MinOmega 0.300 0.300 0.322
MaxDensity 0.927 0.985 1.000
MaxActivation 0.769 0.912 0.942

TABLE II
MEAN NUWR IN 1000TRIALS FOR 5 SELECTION POLICIES APPLIED TO3

ARTIFICIAL NETWORKS.

As shown in Table I, MaxActivation had the highest NUWR
for networks in which R2 was 0.646 or higher—that is,
those whose degree distribution resembles a power-law or
exponential function—and MaxM had the highest NUWR for
the remaining networks except for the Football network, for
which MaxDensity had the highest NUWR.

The second experiment evaluated the algorithms on the
three random graphs. As shown in Table II, MaxDensity had
the highest NUWR for graphs whose proportion of internal
edges was 0.67 (weak community structure), 0.83 (moderate
community structure), and 0.90 (strong community structure).

E. Discussion

The relative accuracy of the alternative vertex selection
criteria in identifying the globally optimal community starting
from a random member of that community varied with the
character of the graph. In heavy-tailed graphs, MaxActivation
performed best; in random graphs and the Football network,
which had very low R2, MaxDensity was most accurate; in
the remaining graphs, MaxM was most accurate. MinOmega
was generally the lowest performing algorithm.

It may seem counterintuitive that the introspective al-
gorithms, MaxActivation and MaxDensity, could ever have
higher NUWR than non-introspective algorithms, such as
MaxM, given that the latter uses information (edges to vertices
in U ) that is ignored by the former. The empirical analysis
suggests that in heavy-tailed networks the number of edges
from a candidate vertexn ∈ N to vertices inU is simply
not an informative indicator ofn’s centrality in the actual
community. In these networks, the structure of individual
communities seems best modeled by the number and length
of paths into the community, as expressed by activation,
irrespective of links intoU . In the random graphs used in
the evaluation, it appears that the simple heuristic of choosing
the node that maximizes the number of internal edges is quite



effective. It is in graphs that are neither random nor heavy-
tailed that the heuristic of preferring nodes that maximizethe
ratio of internal to external edges performs best.

V. CONCLUSION

This paper has shown that previous local community detec-
tion algorithms can sometimes select vertices in an order that
is suboptimal with respect to the actual community structure
because they fail to distinguish edges between members of
the partially known community’s immediate neighborhood
from those to more distant nodes. To address this limitation,
two new algorithms—MaxActivation and MaxDensity—were
proposed that use introspective policies under which vertices
are selected based only on the edges between vertices in the
partially-known community and its immediate neighborhood.

To evaluate the relative accuracy of alternative vertex se-
lection policies, a criterion was proposed, Normalized Utility-
Weighted Recall (NUWR), that measures, relative to a given
centrality measure and actual community structure, how
closely a return set ofk nodes matches thek most central
nodes of the community. In an evaluation comparing five
algorithms on nine natural and three artificial graphs, the
highest NUWR depended on the degree distribution of the
particular graph. The best solutions on graphs having heavy-
tailed degree distributions were found by MaxActivation, the
best solutions on random graphs were found by MaxDensity,
and the best solutions on graphs in neither of these categories
was found by MaxM. These results suggest that selection of
algorithms for incremental community detection should be the
guide to the characteristics of the graph to which they are
applied.

This empirical evaluation is limited to the particular vertex
utility function chosen for the evaluation (node-betweenness
centrality) and, in the case of the natural graphs, to the par-
ticular global community structure on which the vertex utility
function was based (globally maximal modularity). Different
results could be expected if the algorithms were compared with
respect to different community structures or different vertex
utility functions. Indeed, a long-term objective of research in
this field may be to demonstrate how to adapt community
detection techniques to maximize any particular community
structure or vertex-utility criteria specified by a user. For the
present, however, modularity and node betweenness centrality
are very commonly used criteria, so local community detection
algorithms that perform well with respect to these criteriamay
be of broad utility.

This work does not address the challenging problem of
devising a termination policy that maximizes the likelihood
of getting most or all of a community (i.e., maximizing
recall) while minimizing the proportion of non-community
nodes (i.e., maximizing precision). However, identifying better
policies that optimize vertex-selection order will set thestage
for development of such techniques. As better vertex-selection
policies are devised, it may become easier to improve termi-
nation policies as well, leading to much more accurate local

community detection techniques. The work described here is
intended to be a step on this road.
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