
1

Distributed Pivot Clustering with Arbitrary Distance

Functions
L. Karl Branting

7525 Colshire Drive

McLean, Virginia

USA

lbranting@mitre.org

Abstract—

This paper describes an algorithm, Distributed Pivot
Clustering (DPC), that differs from prior distributed
clustering algorithms in that it requires neither an inex-
pensive approximation of the actual distance function
nor that pairs of elements in the same cluster share at
least one exact feature value. Instead, DPC requires
only that the distance function satisfy the triangle
inequality and be of sufficiently high-granularity to
permit the data to be partitioned into canopies of
optimal size based on distance to reference elements,
or pivots. An empirical evaluation demonstrated that
DPC can lead to accurate distributed hierarchical
agglomerative clustering provided that the triangle
inequality and granularity requirements are met.

INTRODUCTION

Clustering very large data sets is essential for data-mining
tasks in many diverse domains, including many forms of
textual, visual, sequential, spatial, and temporal analysis. A
key challenge of hierarchical clustering of very large datasets
is avoiding calculation of a global distance table, an Ω(n2)
operation that is intractable for large data collections.

In domains in which members of the same cluster can
be guaranteed to share a common feature value, distance
calculations can be restricted to pairs sharing at least one
such feature. In the general case, however, there may be no
single criterion for distinguishing pairs belonging to the same
cluster from those that do not, other than the distance function
itself. For example, cross-document named-entity resolution
typically entails clustering within-document coreference chains
having complex contextual information. No single coreference-
chain feature is either necessary or sufficient for such pairs of
coreference chains to denote the same entity.

An intractable global distance table calculation can be ob-
viated if comparisons involving each element can be restricted
to a subset of instances that are plausible candidates for being
in the same cluster. This can be achieved if the original
dataset can be inexpensively partitioned into subsets, possibly
overlapping, of elements that are not too dissimilar from one
another under the distance function.

Techniques for partitioning instances given only a distance
function that satisfies the triangle inequality have been known

for decades. For example, Burkhart-Keller Trees [1], [2] facili-
tate indexing by partitioning instances by distance from pivots,
i.e., randomly selected reference instances. If the distance
function satisfies the triangle inequality, pairs of instances that
differ by more than k in distance to a pivot cannot differ from
each other by less than k. The distance between such pairs
need not be calculated if k is an upper limit on the distance
that can separate members of the same cluster. Similarly,
FastMap [3] projects a metric space onto a Euclidean space
based on relative distance to reference elements. A variety of
other pivot-based indexing techniques exploiting this insight
are discussed in [4].

The insight that distances to reference points can be used
to filter pairs that must be very dissimilar and therefore
need not be compared was applied to clustering in canopy
clustering [5]. As originally described, canopy clustering uses
two distance functions: a “cheap and approximate” function
based on an inverted index; and a second more expensive and
accurate function. Each canopy consists of instances within
some threshold T1 of a random point (i.e., a pivot) under
the inexpensive function, and those within T2 < T1 are
restricted from being in any other canopy. Clustering using the
expensive, precise function is limited to the contents of each
canopy. For agglomerative clustering, this procedure reduces
the cost of a global distance table to the sum of the costs of
building distance tables for the contents of each canopy.

The procedure described in the original canopy clustering
paper demonstrated the utility of partitioning instances into
overlapping subsets based on distance to pivots, but this
approach is not applicable in the general case of an arbitrary
distance function for which no approximation, such as an
inverted index, is available. This dependence on an approxima-
tion to the actual distance function is also found in more recent
approaches to large-scale clustering, which typically depends
on the assumption that all pairs of entities in the same cluster
must share an exact match on at least one feature, such as a
name [6].

In the absence of an inexpensive approximate distance func-
tion based, for example, on exact feature matches, canopies
must be constructed using the precise distance function itself.
In place of an approximate distance function, an approximate
threshold, T ′, must be identified that will guarantee that every
cluster will be contained within a canopy of radius T ′ around
some instance (if this condition cannot be met, no set of pivots

2

can lead to the correct clusters).
Under these circumstances, that is, when which there is

no inexpensive approximation to the distance function, any
practical solution to the general clustering problem must solve
the following three problems:

1) Finding an appropriate approximate threshold T ′ for the
given distance function. If T ′ is too large, canopies will
be too large to cluster tractably, e.g., Hadoop processing
nodes will time-out for lack of progress. T ′ values that
are too small give rise to boundary effects, described in
more detail below, which can cause suboptimal clusters.

2) Finding an appropriate number of pivots or, equiv-
alently, canopies. Too many canopies degrade per-
formance by causing redundant clustering. Too few
canopies, like too small T ′s, result in boundary effects.

3) When overlapping canopies cause a set of instances
to be clustered multiple times in separate clusters,
assigning a single unique cluster assignment for all the
instances. If elements of multiple identical canopies are
not given a single unique cluster assignment, they will
appear to be in separate clusters, degrading clustering
accuracy.

Choosing an appropriate value for T ′ is by far the most
complex of these three tasks. This paper sets forth an approach
to clustering in Hadoop that solves these three problems in a
manner that is agnostic as to both the particular clustering
algorithm applied at each node and the distance function,
requiring only that the distance function satisfy the triangle
inequality.

MOTIVATION AND TASK DESCRIPTION

Large-scale clustering problems with complex distance func-
tions are typified by cross-document entity resolution (CDER)
[7], [8], [9], [10]. Entity resolution comprises the subtasks
of entity matching (i.e., recognizing that two distinct name
strings may denote the same person, and entity disambiguation
(i.e., recognizing that two identical name string instances may
denote different people) [11]. In a typical approach to CDER,
entity resolution is first performed on individual documents,
producing entity records each of which contains a coreference
chain consisting of “mentions” of a single individual in a
single document. Entity records may also contain additional
information associated with entity mentions, such as relation-
ships to co-occurring entities and concepts expressed in the
text surrounding the entity. Entity records are then clustered
based on a distance function defined over coreference chains
and other single-document record information.

Determining the similarity between pairs of entity records
can require complex reasoning. For example, if “John Doe”
and “Jonathan A. Doe” are authors of the same book, this
is strong evidence that they are the same person, whereas
having the same nationality is weak evidence. Sharing an
uncommon name is much stronger evidence of denoting the
same person than is sharing a common name. Because of
the complexity of evaluating the similarity of pairs of entity
records, entity records often contain information that is not
amenable to representation as feature vectors. As a result, in

some cases it is not feasible to model the distance function
as Euclidean distance in feature space. Cross-document entity
resolution is particularly important and challenging in large-
scale document collections, such as the English Wikipedia or
the entire World Wide Web, which can only be stored and
processed in a distributed fashion.

If a threshold T can be identified such that any two records,
Ri and Rj that differ by no more than T (i.e., d(Ri, Rj ≤
T), probably denote the same individual, then cross-document
entity resolution can be performed by a distributed partitional
clustering procedure that does the following:

• Given:

◦ A set of records R in a distributed file system
◦ A distance function d over pairs (Ri, Rj), Ri, Rj ∈

R such that

d satisfies the triangle inequality
∃ some threshold T such that if d(Ri, Rj) ≤
T , then Ri and Rj should belong to the same
cluster.

• Do:

◦ Find a smallest partition P of R such that ∀p ∈
P (Ri ∈ p ∧Rj ∈ p → d(Ri, Rj) ≤ T)

The contribution of this paper is to demonstrate how pivot-
based techniques can be used to implement this distributed
partitional clustering procedure in the MapReduce framework
to accurately cluster distributed datasets even in the absence
of an approximate distance function. Specifically, this pa-
per shows how to find the optimal approximate threshold
T ′, determine an appropriate number of pivots, and assign
members of overlapping canopies to a single unique cluster.
An empirical evaluation demonstrates that the accuracy of
this approach depends critically on aspects of the distance
function, including (1) satisfaction of the triangle inequality,
(2) granularity, and (3) the dimensionality of the data to which
the distance function applies.

DISTRIBUTED PIVOT CLUSTERING (DPC)

Distributed pivot Clustering (DPC) is an approach to cluster-
ing very large data collections in a MapReduce environment.
DPC takes as input a set of records, R, and a distance function,
d, together with three additional parameters (1) an upper limit
S on the number of instances that can be tractably clustered
on a single node, (2) a threshold T representing the upper
limit on distance between two equivalent records, and (3) the
target degree of overlap between canopies, O. S, T , and O
can be determined empirically by clustering a subset of data
on a single node: S through timing tests, and T and O through
cross validation, if ground-truth data is available.

As with other pivot-based algorithms, DPC exploits the fact
that, for functions satisfying the triangle equality, instances that
are close to the same pivot must also be close to each other.
At a high level, the DPC approach is as follows:

• Calculate a value for T ′ such that the number of el-
ements within T ′ of each pivot i.e., the mean canopy
size C, will be as close as possible to S, that is, each
canopy will consist of the maximum number of elements
that can be tractably clustered at a single node.

3

Fig. 1. A histogram of per-bin and cumulative pair-wise distance counts for
100,000 sample pairs, 100,000 random 80-character strings, character-vector
arc-cosine distance, and 1,000 bins.

• Select a set of P random pivots from the unclustered
records such that P ∗ C = |R| ∗ O, that is, so that the
number of pivots times the canopy size, P ∗C, is equal to
total number of elements times the target overlap, R∗O.

• Construct a canopy for each pivot p consisting of all
unclustered records r such that d(p, r) ≤ T ′. The
triangle inequality guarantees that the distance between
each pair of records in a given canopy will be no more
than 2 ∗ T ′.

• Cluster the contents of each canopy using threshold
T ≤ T ′. Select a unique cluster assignment for instances
belonging to multiple clusters.

• Repeat this procedure while any unclustered records
remain.

Calculating T ′

The purpose of the first two MapReduce jobs is to calculate
a value for T ′ that is large enough to minimize boundary
effects but small enough to be tractable. The complex nature
of many distance functions means that pairwise distances are,
in general, not normally distributed. Instead, the distribution is
best modeled as a histogram of counts.

The first MapReduce step samples random pairs of instances
and writes out, for each node, the frequency counts of each
distinct distance at that node ([key: binNumber, value: count]),
where the default number of bins is 1,000,000. The second
MapReduce job sums these values across all nodes, producing
a histogram for the sampled instances of the entire set.

For example, Figure 1 is a histogram of per-bin and cumu-
lative pair-wise distance counts for 100,000 sample pairs taken
from 100,000 random 80-character strings, where distance
is measured as the arc-cosine between pairs of character-
vectors. The vertical axis is the proportion of pairs falling
within each bin shown in the horizontal axis. Specifically,
the value of bin k is the number of pairs Ri, Rj for which
(k − 1)/b ≤ d(Ri, Rj) < k/b.1

1No bin is needed for the distance 1.0 because pairs with maximum
dissimilarity should never be in the same canopy.

Based on the histogram, T ′ is calculated as

T ′ = argmaxT ′(
∑⌊b∗T ′⌋

k=1
bink/|sample| ≤ S/|R|)

That is, T ′ is the inverse cumulative sum of the proportion of
the entire sample in each bin of the histogram. The calculation
is performed by simply iterating through the bins of the
histogram starting with the bin corresponding to the lowest
distance and stopping when the sum of histogram counts
reaches the largest sum less than or equal to |sample| ∗S/|R|
(since a larger value might lead to canopies too large to
tractably cluster at each node). In Figure 1, T ′ has been
selected such that the cumulative distribution is 0.2. Each
canopy that includes all records within this T ′ of a pivot can
be expect to contain about 20% of the entire data set. To select
canopies with a smaller proportion of the entire data set, which
is typical necessary for large data sets, a much smaller value
for T ′ would be selected.

Pivot Selection

The third MapReduce job selects P random pivots from the
unclustered records, where P = |R| ∗O/S, that is, so that the
number of pivots is equal to total number of elements times
the target overlap over the target canopy size. To insure that
each node has exactly the same pivots, the pivots are sent to
the distributed cache at the conclusion of this job.

Canopy Construction and Clustering

The fourth mapper compares each unclustered record to each
pivot. Those that match a pivot are written to the canopy for
that pivot ([key: pivot, value: record]). The fourth reducer
then clusters the elements of each canopy, i.e., clusters all
records that match a common pivot, writing the results as [key:
record, value: clusterSummary]. Each clusterSummary records
the number of elements of the cluster and the mean similarity
of the key to the other elements of the cluster, information
that is used in the unique cluster assignment step. Pivots that
match no other records are treated as singleton clusters.

Unique Cluster Assignment

The Fifth MapReduce job starts with an empty Mapper. The
Reducer iterates over pairs of the form [key: record, value:
clusterSummary]. Each such pair represents an alternative
assignment of the record to a different cluster, each correspond-
ing to a separate canopy in which the key occurred (there will
be a separate canopy for each pivot p for which d(p, s) ≤ T ′).
Each record is assigned to single cluster according to the
following procedure:

• Select the largest cluster containing the record.
• If there are multiple clusters of the same size, select the

cluster for which the mean distance between the record
and the elements of the cluster is least.

• If there are still multiple clusters, impose an arbitrary
ordering of clusters (e.g., select the cluster with mini-
mum hash code) to break the symmetry in a consistent
way.

4

Fig. 2. Canopies, indicated by large circles, consist of all instances within
T ′ of a pivot, shown in red.

Fig. 3. Canopy overlaps and singletons do not affect accuracy, but boundary
effects degrade accuracy.

Segregation

Two additional MapReduce jobs are needed to identify the
records from the original set, R, that are not yet clustered
(because they did not match any pivot), and to move any such
records to a separate directory for the next iteration of the
algorithm.

Recalculation of Statistics

If instances remain to be clustered, which can happen if the
original data set does not equal the union of the canopies, the
sequence of MapReduce steps is repeated, including calcula-
tion of the distribution of pair-wise distances. Recalculation of
distribution statistics is necessary because at each iteration un-
clustered instances are more likely to be in sparsely populated
regions than those clustered. Thus, the distribution typically
changes each distribution.

Overlaps, Singletons, and Boundary Effects

Figure 2 illustrates notionally how canopies (depicted as
large circles) consist of all instances within T ′ of a pivot

(shown in red). Since pivots are chosen at random, the canopies
can overlap in unpredictable ways. Not shown in this figure is
the fact that instances are initialed distributed unpredictably
among the nodes in the Hadoop cluster, so that instances
that are close together under the distance function are not,
in general, initially on the same node.

Intuitively, the purpose of the pivots is identify instances
that are close enough together under the distance function that
they can be clustered on a single node. The fourth mapper,
described above, indexes all such instances with a common
key so that they are all handled by the same reducer, and the
fourth reducer clusters all instances in each canopy.

Figure 3 illustrates that when canopies are clustered, the
result may include singleton or overlapping clusters, and that
there may be boundary effects in which a ground-truth cluster
only partially overlaps any canopy. Overlapping clusters don’t
reduce accuracy as long as instances are consistently assigned
to a unique largest and best matching cluster, as per the
procedure above.

Boundary effects, however, degrade clustering accuracy. A
ground-truth cluster that is not completely contained within
some canopy can not be accurately detected. This is the
motivation for requiring the degree of canopy overlap to be
as large as tractable to minimize the likelihood of boundary
effects.

TWO WAYS A DISTANCE FUNCTION CAN AFFECT

CLUSTERING ACCURACY

There are many ways to measure the distance between
pairs of entities, such as co-reference chains, for the purpose
of clustering. However, the choice of distance function can
have a significant effect on the effectiveness and accuracy
of distributed pivot clustering. As shown above, the triangle
inequality guarantees that each pair of records in a canopy
differ by no more than 2 ∗ T ′. If the triangle inequality is not
satisfied, this guarantee may fail, meaning that canopies are no
longer guaranteed to consist of similar records. For example,
suppose that 2 ∗ T < T ′ and there is some record r1 that is
less than T from both pivot V and from a second record, r2.
If the triangle inequality is satisfied, record r2 can differ from
a pivot V by no more than 2 ∗ T < T ′ and will therefore
be in the same canopy as r1. If the triangle inequality is not
guaranteed, r2 could be arbitrarily far from V and therefore
fail to be in V ’s canopy. Under these circumstances, r1 and
r2 could fail to be in the same cluster.

There is a second, less obvious, scenario in which a distance
function can preclude accurate clustering even if the distance
function satisfies the triangle inequality. DPC calculates T ′

based on the histogram of pairwise distances in the corpus.
If the distance function d has too few distinct values, then
there may be no possible values for T ′ such that (1) T ′ ≥ T
(necessary to avoid boundary effects) and (2) the cumulative
sum of T ′ is no larger than |sample| ∗ S/|R|, that is, the T ′

neighborhoods of pivots contain no more than the upper limit,
S, on tractable canopy size. For example, if d is normalized

5

Fig. 4. Artificial data sets in which members of the same cluster differ by at
most T , while elements of different cluster differ by strictly greater than T .

edit distance,2 the number of distinct values of d can be no
greater than the length of the longest string being compared.
If the number of records being clustered is large in proportion
this number of distinct values, it may be impossible to satisfy
both conditions (1) and (2) above.

In sum, pairs of instances may fail to be clustered if
either (1) the distance function does not guarantee the triangle
inequality, in which case instances close to each other may not
be close to the same pivot, or (2) the distance function has very
few possible values relative to the number of instances being
clustered, in which case there may be no possible value of the
distance function that can produce canopies small enough to
be tractable but big enough to avoid boundary effects.

EXPERIMENTAL EVALUATION

To demonstrate empirically the effect of distance function
characteristics on clustering accuracy, an evaluation was per-
formed using artificial data on which four distinct distance
functions were defined:

1) Character cosine (CC). Instances are strings of charac-
ters (default length 80), and distance is the cosine of
the frequency vectors of the character strings. CC does
not guarantee the triangle inequality.

2) Arc-cosine of character cosine (AC). Identical to CC
except that the cosine is converted to an angle by arc-
cosine function. AC guarantees the triangle inequality.

3) Edit distance (ED). Normalized edit distance between
two character strings (default length 80) consisting of
edit distance divided by the length of the longest of the
two strings being compared (by default, both strings are
the same length). ED satisfies the triangle inequality but
has a limited number of possible values.

4) Euclidean distance (L2). Instances are vectors of real
number, of length 4 by default.

2Normalized edit distance is edit distance divided by the length of the
longest of the two strings being compared. Hereafter in this paper, the term
“edit distance” is used as shorthand for “normalized edit distance”.

Fig. 5. Mean recovered cluster size for clusters with actual size 10 and
overlap of 4.

To simplify evaluation of clustering accuracy, artificial data
sets were constructed such that every cluster had the same
number n of elements (defaulting to 10), the maximum dis-
tance between any pair of elements in each cluster was T ,
and the minimum distance between any pair of elements not
in the same cluster was strictly greater than T , as depicted in
Figure 4. The clustering algorithm applied to each canopy was
complete (maximum) linkage agglomerative hierarchical clus-
tering, with a maximum pairwise distance within each cluster
of T . Under this approach, if every cluster c discovered by the
algorithm is of size |c| = n, then the correct structure has been
discovered. This is because the clustering procedure guarantees
that no cluster can contain any pair whose dissimilarity is
greater than T . This precludes clustering errors in which pairs
that should be in separate clusters are incorrectly placed in the
same cluster. The only possible clustering error is separation
of the instances that should be in one cluster into two or more
clusters, i.e., the only possible error is false negatives. Thus,
a mean cluster size of less than n indicates a loss of accuracy
from failure to cluster entities that differ by less than T .

In the first experiment, data sets were created of sizes 2,500,
10,000, 40,000, 160,000, 640,000, 1,280,000, the Euclidean
data was 4-dimensional, the CC, AC, and ED data consisted
of length-80 character sequences, the target canopy size was
2,000, and target overlap, O, was 4.

The results, shown in Figure 5, illustrate the effects of errors
of both types described above. The vertical axis of Figure 5
represents the mean size of the clusters returned by DPC on
each data set. Mean size of 10 means that the exact cluster size
has been recovered, while lower values mean that instances that
differ by less that T were not clustered together.

For data sets of all sizes, AC had a higher mean cluster
size, and therefore greater accuracy, than CC even though
both the underlying character strings themselves and their
representation as character frequency vectors was identical.
Replacing a function that violated the triangle inequality (char-
acter cosine)with one that preserved it (arc cosine) consistently
improved accuracy.

6

Fig. 6. Mean error rate in canopy size.

Fig. 7. Mean canopy size.

Fig. 8. Per bin and cumulative proportion of all pairs for edit distance.

Fig. 9. Per bin and cumulative proportion of all pairs for edit distance.

Fig. 10. Accuracy of L2 as a function of the number of dimensions (40,000
instances).

Fig. 11. Accuracy of AC and CC as a function of target overlap, O, for
160,000 instances.

ED satisfies the triangle inequality,3 but Figure 5 shows that
DPC accuracy plummeted for ED as the data set size grew.

Figure 6 shows that ED is the only distance function for
which there is a high error rate in canopy size, and Figure 7
shows that the error rate is the result of the canopy size being
much lower than the target of 2,000 for every size data set
except 40000.

To understand why the limited number of possible values
degrades the accuracy of canopy-sizes in large data sets, con-
sider that for the largest set in the evaluation above, 1,280,000,
a single canopy of size 2,000 is 2,000/1,280,000 = 0.0015625
of the total number of instances being clustered. Accordingly,
T ′ should be selected so that the cumulative sum of histogram
bins is 0.0015625. Figure 8 shows the very small number of
distinct bins in the histogram for 100,000 sample pairs drawn
from 100,000 random 80 character strings. Figure 9 shows that
the cumulative proportion increases from 0.00036 to 0.00252
as edit distance increases from 0.73 to 0.74 (i.e., the number of
character differences increases by 1). Choosing T ′ to be 0.73
would lead to canopies containing on average 0.00252 of the
total, or roughly 3226 per canopy, whereas T ′ = 0.74 leads to
canopies on average of 0.00036, or roughly 461 per canopy,
small enough to lead to boundary errors. Since DPC selects T ′

3Edit distance satisfies the triangle inequality because edit-distance(A,C)
can never exceed edit-distance(A,B) + edit-distance(B,C), that is, the length
of the shortest sequence of edits from A to B to C is an upper bound on the
length of the shortest sequence of edits from A to C.

7

such that canopies will be no greater than the target size, S,
T ′ is selected to be 0.74, leading to the under-sized canopies
and resultant severe boundary effects shown above.

Occasional accurate performance under edit distance, such
as occurred with the 40,000 instances data set in the example
above, results when one of the small number of possible
distance values happens to coincide with the proportion of
instances required for the target canopy size. The insufficient
granularity of edit distance stands in contrast to the situation
shown in Figure 1, in which the granularity of character-vector
arc-cosine is effectively limited only by the number of bins.

For larger data sets, clustering was considerably more accu-
rate under Euclidean distance than under arc-cosine distance.
One possible explanation for this phenomenon is that the
higher dimensionality of character vectors degrades perfor-
mance, since higher dimensions lead, all else being equal, to
less distance variance and therefore diminished discrimination
among instances based on distance [12]. Figure 10 provides
confirmation for this hypothesis because it shows that the
accuracy under Euclidean distance diminishes with increasing
dimensions.

The effect of varying the target canopy overlap, O, is
shown in Figure 11. Increasing target overlap increased cluster
accuracy over the entire range tested. This suggests that a
high level of canopy overlap is needed to minimize boundary
effects.

In summary, the results shown in Figure 5 illustrate two
ways in which an inappropriate distance function can lead
to degraded clustering accuracy: the function may violate the
triangle inequality, like character cosine, or the function may
have too few distinct values to permit the set of instances to
be partitioned into canopies of the right size for distributed
clustering, like edit distance. Euclidean distance suffers from
neither of these defects, and Figure 5 shows that it supports
accurate clustering even at large scales for four-dimensional
vectors, although accuracy decreases for higher dimensions.
Character vector arc cosine also satisfies both criteria, but its
high dimensionality appears to cause some loss of discrimi-
nation based on distance to pivots and therefore some loss of
clustering accuracy.

CONCLUSION

This paper has described a procedure, DPC, for tractable
clustering of large data collections under the MapReduce
framework. In contrast to previous large-scale clustering al-
gorithms, DPC does not depend on the existence of an
inexpensive approximation of the actual distance function
nor on the requirement that pairs of elements in the same
cluster share at least one exact feature value. Instead, DPC
depends only on a distance function that satisfies the triangle
inequality and that is sufficiently high-granularity to partition
the data set into partitions small enough to cluster on a
single processor. This paper has shown that key technical
challenge of DPC, determining a value of T ′ that produces
canopies of appropriate size, can be solved by sampling the
pairwise distances distribution in the data set. The experimental

evaluation suggests that performance is better with lower-
dimensional than higher-dimensional data and is improved by
significant canopy overlap.

DPC demonstrates that very large data sets data can be
tractably and accurately clustered in the MapReduce frame-
work, for any distance function with sufficient granularity
that satisfies the triangle inequality. This result should extend
the range of domains amenable to large-scale hierarchical
clustering beyond those for which simplifying assumptions,
such as that all pairs of elements in the same cluster necessarily
share at least one common feature value.

ACKNOWLEDGMENT

This work was funded under contract number CECOM
W15P7T-09-C-F600. The MITRE Corporation is a not-for-
profit Federally Funded Research and Development Center
chartered in the public interest.

REFERENCES

[1] W. A. Burkhard and R. M. Keller, “Some approaches to best-match file
searching,” Commun. ACM, vol. 16, no. 4, pp. 230–236, 1973.

[2] R. A. Baeza-Yates and G. Navarro, “Fast approximate string matching
in a dictionary,” in String Processing and Information Retrieval, 1998,
pp. 14–22.

[3] C. Faloutsos and K.-I. Lin, “Fastmap: a fast algorithm for indexing,
data-mining and visualization of traditional and multimedia datasets,”
in Proceedings of the 1995 ACM SIGMOD international conference on

Management of data, ser. SIGMOD ’95. New York, NY, USA: ACM,
1995, pp. 163–174.

[4] E. Chavez, G. Navarro, R. A. Baeza-Yates, and J. L. Marroquin,
“Searching in metric spaces,” ACM Computing Surveys, vol. 33, no. 3,
pp. 273–321, 2001.

[5] A. McCallum, K. Nigam, and L. H. Ungar, “Efficient clustering of high-
dimensional data sets with application to reference matching,” 2000.

[6] L. Sarmento, A. Kehlenbeck, E. C. Oliveira, and L. H. Ungar,
“An approach to web-scale named-entity disambiguation,” in Machine

Learning and Data Mining in Pattern Recognition, 6th International

Conference, MLDM 2009, Leipzig, Germany, July 23-25, 2009. Pro-

ceedings, ser. Lecture Notes in Computer Science, P. Perner, Ed., vol.
5632. Springer, 2009, pp. 689–703.

[7] A. Bagga and B. Baldwin, “Entity-based cross-document coreferencing
using the vector space model,” in Proceedings of the 17th international

conference on Computational Linguistics (ACL 1998), 1998, pp. 79–88.

[8] C. H. Gooi and J. Allan, “Cross-document coreference on a large scale
corpus,” in HLT-NAACL’04, 2004, pp. 9–16.

[9] M. Wick, S. Singh, and A. McCallum, “A discriminative hierarchical
model for fast coreference at large scale,” in Proceedings of the 50th

Annual Meeting of the Association for Computational Linguistics: Long

Papers - Volume 1, ser. ACL ’12. Stroudsburg, PA, USA: Association
for Computational Linguistics, 2012, pp. 379–388.

[10] L. Kolb, A. Thor, and E. Rahm, “Load balancing for mapreduce-
based entity resolution,” in Data Engineering (ICDE), 2012 IEEE 28th

International Conference on, 2012, pp. 618–629.

[11] A. Haghighi and D. Klein, “Unsupervised coreference resolution
in a nonparametric bayesian model,” in Proceedings of the 45th

Annual Meeting of the Association of Computational Linguistics.
Prague, Czech Republic: Association for Computational Linguistics,
June 2007, pp. 848–855. [Online]. Available: http://www.aclweb.org/
anthology/P07-1107

[12] J. H. Friedman and U. Fayyad, “On bias, variance, 0/1-loss, and
the curse-of-dimensionality,” Data Mining and Knowledge Discovery,
vol. 1, pp. 55–77, 1997.

