
Efficient Name Variation Detection

L. Karl Branting
BAE Systems, Inc.

6315 Hillside Ct., Suite A
Columbia, MD 21046

karl.branting@baesystems.com

Abstract

Semantic integration, link analysis and other forms of
evidence detection often require recognition of multi-
ple occurrences of a single name. However, names fre-
quently occur in orthographic variations resulting from
phonetic variations and transcription errors. The com-
putational expense of similarity assessment algorithms
usually precludes application to all pairs of strings. In-
stead, it is typically necessary to use a high-recall, low-
precision index to retrieve a smaller set of candidate
matches to which the similarity assessment algorithm
is then applied.
This paper describes five algorithms for efficient can-
didate retrieval: Burkhart-Keller trees (BKT); fil-
tered Burkhart-Keller trees (FBKT); partition filtering;
ngrams; and Soundex. An empirical evaluation showed
that no single algorithm performed best under all cir-
cumstances. When the source of name variations was
purely orthographic, partition filtering generally per-
formed best. When similarity assessment was based on
phonetic similarity and the phonetic model was avail-
able, BKT and FBKT performed best. When the pro-
nunciation model was unavailable, Soundex was best
for k=0 (homonyms), and partition filtering or BKT
were best for k>0. Unfortunately, the high-recall re-
trieval algorithms were multiple orders of magnitude
more costly than the low-recall algorithms.

Introduction
Pattern-detection tasks, such as semantic integration and
link analysis, often require recognition of multiple occur-
rences of any single entity. This recognition task can be
difficult for entities that are proper names because of the
orthographic variations that frequently characterize names.
These variations can be caused by a variety of factors, in-
cluding transcription and OCR errors, spelling variations
(e.g. “Geoff” vs. “Jeff” and “McDonald” vs. “MacDon-
ald”), and cross-lingual transliterations (e.g. “Mohamed”
and “Muhammet” are just two of many alternative repre-
sentations of a single common Arabic name). Detecting
multiple occurrences of a given name therefore requires an
efficient mechanism forname matching,recognizing when

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

two names are sufficiently similar that they might denote the
same person.

Name Matching
There are two components to the name matching task. The
first, similarity assessment, consists of determining whether
two strings are sufficiently similar that they are likely to de-
note the same individual. Because similarity assessment can
be computationally expensive, most practical applications of
name matching require a second component,candidate re-
trieval, to inexpensively find a set of potential matches to
which the similarity assessment algorithm will be applied.
Different research communities use different terminology
to refer to the candidate retrieval task. For example, can-
didate retrieval is referred to asblocking in the statistical
record linkage literature (CRF03),filtering in the approxi-
mate string matching literature (Nav01),two-stage retrieval
in Information Retrieval (SZ98), andMAC/FACby some re-
searchers in analogy (GF91).

The most appropriate similarity assessment algorithm in
a given context depends on the differences most likely to
be shared by name variations in that context, which in turn
depends on the factors giving rise to the variations. The sim-
plest and most common approach is “Levenshtein” distance
(sometimes referred to simply as “edit distance”), which
counts the number of insertions, deletions, or substitutions
necessary to transform one string into another, implicitlyas-
suming that all one-character variations are equally likely.
Needleman-Wunsch distance permits separate weights for
different edit operations (Gus99), which can account for
differing probabilities of one-character variations. Smith-
Waterman distance determines the maximum similarity be-
tween substrings of each string (Gus99), implicitly assum-
ing that insertions are less indicative than deletions of ac-
tual name differences. Affine gap cost metrics impose a
different penalty for the first in a series of insertions than
for subsequent insertions (ME97). The intuition behind
affine gap cost is that the fact that an insertion occurs at
all may be more important than the particular length of
the insertion. The Jaro and Jaro-Winkler metrics weights
errors near the beginning of strings more heavily than er-
rors occurring later, and reduces the penalty for letters that
are not too far out of place (Jar95; Win99), implicitly as-
suming that transcription errors are more likely near the

end than near the beginning of words and usual involve lo-
cal displacements. Jaro-Winkler reduces penalties for er-
rors involving characters that appear similar (e.g., “I” vs.
“l”) or that are close together on keyboards (e.g., “v” and
“b”), implicitly assuming that typing errors are a signif-
icant source of variations. Recent research has focused
on adaptive algorithms to learn similarity metrics based on
examples of strings that should match (BCF+03; BM03;
RY98).

This variation in similarity-assessment criteria indicates
that an evaluation of candidate-retrieval algorithms is in-
complete if it is limited to a single similarity-assessmental-
gorithm. Instead, candidate-retrieval algorithms shouldbe
tested under a variety of conditions. Unfortunately, rela-
tively little research has been directed to the problem of can-
didate retrieval.

Candidate Retrieval Algorithms
The two most commonly applied approaches for candidate
name retrieval arephonetic abstractionandngrams.

Phonetic Abstraction
In phonetic abstraction, names are indexed by a phonetic
representation created by mapping sequences of characters
to phonetic categories. Such phonetic abstractions partition
the name space into equivalence classes of names having
identical phonetic representations. Each member of a parti-
tion is indexed by the shared phonetic representation.

The oldest phonetic abstraction function is Soundex,
which was patented in 1918 and 1922 by Russell and Odell
(U.S. Patents 1,261,167 and 1,435,663) and described by
Knuth in (Knu75).1 Soundex has many well-known limi-
tations, including including inability to handle different first
letters with identical pronunciations (e.g., Soundex of “Kris”
is K620, but Soundex of “Chris” is C620), truncation of long
names, and bias towards English pronunciations.

A number of alternative phonetic encodings have been de-
veloped in response to the limitations of Soundex, including
the following:

• NYSIIS (Taf70)

• PHONIX (Gad90)

1Soundex encodes each string as the first letter of the string
followed by 3 numbers representing the phonetic categoriesof the
next 3 consonants, if any, in the string. The categories of conso-
nants are:

1. B,P,F,V

2. C,S,K,G,J,Q,X,Z

3. D,T

4. L

5. M,N

6. R

Vowels are ignored and adjacent letters from the same category are
represented with a single digit. For example, ”Washington”would
be encoded as ”W252”: W is the first letter, 2 for the S, 5 for the
N, 2 for the G, and the remaining letters disregarded.

• EDITEX (ZD96)

• Metaphone (Phi90)

• Double metaphone (Phi00)

• Phonetex (HA)

• A range of phonetic abstractions with varying category
sizes used in NameSearch2.

Each of these alternatives has some advantages over
Soundex. Nevertheless, Soundex is still in use in many law
enforcement and national security applications (Diz04).

Phonetic abstraction has the limitation that pairs of names
in separate phonetic equivalence classes cannot, in general,
be guaranteed to differ by more than any arbitrary distance
k. As a result, phonetic abstraction, in general, has no guar-
anteed lower bounds on recall. This phenomenon was il-
lustrated in an empirical evaluation in (Bra03) that found
that indexing on two independent phonetic abstractions led
to significantly higher recall than indexing with a single pho-
netic abstraction.

Ngram Indexing
The second common candidate retrieval algorithm for names
is ngram indexing, under which each pattern string is in-
dexed by every n-element substring,i.e., every sequence of
n contiguous letters occurring in the pattern string (typically,
the original string is padded with special leading and trail-
ing characters to indicate the start and end of the name).
The candidates for each target string are retrieved using the
ngrams in the target as indices (CRF03). Typical values for
n are 3 or 4.

Pivot-Based Indexing
Efficient retrieval algorithms exist for indexing entities
amenable to representation as vectors, if the number of di-
mensions is not too great. These algorithms, termedspatial
access methods, include kd-trees, R-trees, quad-trees, and
numerous variants. A variety of entities are not amenable
to vector representation, however, including structured enti-
ties, audio and video content, DNA segments, and strings.
Pivot-based indexing techniques are applicable to domains,
such as name matching, in which entities are not amenable
to vector representation but for which the distance metric
satisfies the triangle inequality.3

The key idea is to organize the index around a small group
of elements, calledpivots. In retrieval, the distance between
the query probeq and any elemente can be estimated based
on the distances of each to one or more pivots. There are nu-
merous pivot-based metric space indexing algorithms. An
instructive survey of these algorithms is set forth in (CN-
BYM01).

2 www.name-searching.com/Working/Name Search.htm
3To see that Levenshtein distance satisfies the triangle inequal-

ity, consider that the edit distance from string A to string Bcan’t
be any greater than the sum of the edit distance from A to any
third string C plus the edit distance from C to B. Therefore edit-
distance(A,B)≤ edit-distance(A,C)+ edit-distance(C,B) for any
strings A, B, and C.

Burkhart-Keller Trees (BKT). One of the oldest pivot-
based indices is BKT, or Burkhart-Keller Trees (BK73;
BYN98). BKT is suitable for discrete-valued distance met-
rics. As originally described, an arbitrary element is selected
as the root of the tree. Theith child of the root consists of
all elements of distancei from the root. A new BKT is re-
cursively constructed for each child until the number of ele-
ments in a child falls below a predefined bucket size.

A range query on a BKT with a probeq, rangek, and d
pivot p is performed as follows. If the BKT is a leaf node,
the distance metricd is applied betweenq and each element
of the leaf node, and those elementse for whichd(q, e) < k
are returned. Otherwise, all subtrees with indexi for which
|d(q, e) − i| ≤ k are recursively searched.

The triangle inequality guarantees that this procedure
can’t miss any elements withink of q. If elemente is in
a subtree not selected for search, then it must be the case
that either

(1) d(p, e) − d(p, q) > k

or

(2) d(p, q) − d(p, e) > k

In case (1), the triangle inequality guarantees thatd(p, e) ≤
d(p, q) + d(q, e), from which it follows thatk < d(p, e) −
d(p, q) ≤ d(q, e). In case (2), the triangle inequality guar-
antees thatd(p, q) ≤ d(p, e) + d(q, e), and thereforek <
d(p, q) − d(p, e) ≤ d(q, e). In either case,k < d(q, e), and
q therefore cannot matche.

While all names withink of a query are guaranteed to be
retrieved by a BKT (i.e., recall is 100%), there are no guar-
antees on precision. During search, one application of the
distance metric is required at each internal node traversed,
and a distance metric application is required for each candi-
date element in leaf nodes reached during the traversal.

The number of nodes searched is exponential ink. Infor-
mally, the height of the BKT is⌈logb(n)⌉ (for branching fac-
tor b) and the number of nodes searched on levell is 2k + 1
times the number searched on levell − 1. The total number
of nodes searched is therefore approximately

∑⌈logb(n)⌉
i=1 (2k + 1)i = (2k+1)⌈logb(n)⌉+1−1

⌈logb(n)⌉−1)

Thus, BKT brings 100% recall at the price of a search that
is very expensive for largek. The base of the log is de-
termined by the mean number of children of each internal
node, which in turn is determined by the variance in the dis-
tance metric on the given set of elements. Unfortunately, as
discussed below, the variance in Levenshtein distance as ap-
plied to proper names is typically quite low, resulting in a
deep tree and an expensive search.

Filtered Burkhart-Keller Trees (FBKT). Filtered
Burkhart-Keller Trees (FBKT) uses a standard BKT but
adds a separate set of pivots for filtering. A vector of
distances to the pivots is calculated for each element.
During retrieval, candidates whose maximum pairwise
vector difference from the query exceedsk are filtered.

The filtering adds very little to the computational cost of
handling each candidate. However, FBKT imposes the over-
head of applying the metric between the pivots and each ele-

ment in the index,i.e., np metric applications. FBKT yields
a net reduction in the number of calls to the distance metric
if there are sufficient retrievals that the number of candidates
filtered exceedsnp.

Partition Filtering

An approach to filtering employed in the approximate string
matching community relies on the observation that if a pat-
tern string P of lengthm is divided into segments of length
⌊ m

(k+1) ⌋, then any string that matches P with at mostk errors
must contain an exact match for at least one of the segments
(intuitively, if would take at leastk + 1 errors,i.e., edit op-
erations, to alter all of these segments) (NBY99). Strings
indexed by⌊ m

(k+1)⌋-length segments can be retrieved by an
efficient exact string matching algorithm, such as suffix trees
or Aho-Corasick trees (Gus99). This approach is will be re-
ferred to here aspartition filtering.

Partition filtering indexing differs from ngram indexing
in two respects. First, ngrams overlap, whereas partition fil-
tering involves partitioning each string into non-overlapping
segments. Second, the choice ofn in g-gram filtering is typ-
ically independent ofk, whereas the size of the segments in
filtering is chosen based onk. Since in most applicationsn
is independent ofk, ngram retrieval, like phonetic abstrac-
tion, lacks any guaranteed lower bound on recall, whereas
partition filtering guarantees 100% recall.

Experimental Design
The recall and precision of the five candidate-retrieval al-
gorithms were compared on the 5,000 most common last
names identified during the most recent U.S. Census.4 The
retrieval algorithms were compared with respect to two al-
ternative similarity assessment criteria. The first is Leven-
shtein distance with unit weights for insertions, deletions,
and substitutions. The second ispronunciation distance,
which consists of edit (Levenshtein) distance between pro-
nunciations represented using the phoneme set of the CMU
pronouncing dictionary.5 The pronunciation of each name
was determined by finding the first entry in the CMU dictio-
nary for that name. To model the phenomenon that match-
ing names are unlikely to start with different initial sounds,
insertion, deletion, and substitution of the first phoneme is
given weight 2, while all other edit operations have weight 1.
For example, “MEUSE” and “MEWES” have pronunciation
distance of 0 because both have pronunciation “M Y UW
Z.” Similarly, “BECKY,” “BENNEY,” “BREA,” and “BU-
RES” all have pronunciation distance from “BERRIE” of 1,
since their pronunciations are, respectively, “B EH K IY”
“B EH N IY” “B R IY” “B EH R Z” and the the pronunci-
ation of “BERRIE” is “B EH R IY.” By contrast, “BERRY”
and “MARY” have phonetic distance 2 because they differ
in their initial phonemes,i.e., “B EH R IY” and “M EH R
IY.”

4The names were taken the 1990 U.S.
Census collection of 88,799 last names at
http://www.census.gov/genealogy/names/names files.html.

5http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

In BKT and FBKT, the bucket size (maximum number of
elements in any leaf node) was 2, and the longest element
(rather than a random element) was selected as the root of
each subtree. The rationale for this choice is that there is
typically more variance in distance from a longer word than
from a shorter word. The filter in FBKT consisted of 16
pivots selected to be maximally distant.

Soundex was used as the phonetic abstraction index in
the evaluation because it is the simplest and most widely
used phonetic abstraction method. In Soundex indexing,
each name was indexed by its Soundex abstraction. Simi-
larly, in ngram indexing each name was indexed by all its
ngrams, with special leading and trailing characters added.
Retrieval was performed by finding the Soundex encoding
(or the ngrams) of each query and retrieving every name in-
dexed by the Soundex encoding or any ngram.

In partition filtering, each name was indexed by each of its
k+1 partitions, and the partitions themselves were added to
an Aho-Curasick tree. Retrieval was performed by applying
the Aho-Curasick tree to the query to determine all partitions
occurring in the query and retrieving the names correspond-
ing to each partition, removing duplicates.

Retrieval was performed under 3 conditions. In the first,
the similarity criterion was edit distance for k={1,2}. In the
second, the similarity criterion was pronunciation distance
for k={0,1,2}, and the pronunciation distance function was
available to BKT and FBKT (i.e., pivots were selected on
the basis of pronunciation distance). Ngram and partition
filtering was performed on letters only.

In the third condition, the similarity criterion was again
pronunciation distance for k={0,1,2} but the pronunciation
distance function was not available to BKT and FBKT (i.e.,
pivots were selected by edit distance).

Results
Tables 1 and 2 set forth the results of retrieval with edit dis-
tance as the similarity criterion. Column 1 shows that only
BKT, FBKT, and partition filtering had 100% recall. The re-
call of ngrams was 0.782 with k=1, which may be sufficient
for some applications, but recall was lower for Soundex for
k=1, and recall for both ngrams and Soundex was much
lower for k=2.

The third column of both tables shows the precision, the
proportion of retrieved names that satisfy the criterion. In
candidate retrieval precision reflects the number of times the
similarity assessment algorithm must be invoked to find ac-
tual matches. However, precisionper seunderstates the ac-
tual number invocations of the similarity metric for BKT
and FBKT, because these algorithms require the metric to
be called at each node as it is searched to determined which
subtrees to explore. The column labeled “eff-prec,” meaning
“effective precision,” includes the number of internal metric
invocations in the precision calculation to reflect the truera-
tio of actual matches to similarity function invocations , e.g.,

effective-precision = true-positives/(true-positives +
false-positives + internal-metric-invocations)

Because recall is much more important than precision for
candidate retrieval, f-measure as displayed in the column la-

Table 1: Retrieval results with edit distance and k=1.
recall precision eff-prec eff-f-100

BKT 1 0.0102 0.0056 0.362
FBKT 1 0.0644 0.0054 0.354

partition 1 0.0447 0.0229 0.703
ngrams 0.782 0.1463 0.1463 0.749

soundex 0.317 0.2147 0.2147 0.315

Table 2: Retrieval results with edit distance and k=2.
recall precision eff-prec eff-f-100

BKT 1 0.0065 0.0042 0.298
FBKT 1 0.0107 0.0051 0.341

partition 1 0.011 0.011 0.529
ngrams 0.356 0.1444 0.1444 0.351

soundex 0.082 0.2186 0.2186 0.083

beled “eff-f-100” is(1+α)∗r∗p/(α∗p)+r), with α = 100,
r = recall, andp = effective precision, which makes recall
100 times as important as precision. Under this criterion,
ngrams has slightly higher f-measure than partition-indexing
for k=1, but parition-indexing has the highest f-measure for
k=2. FBKT has higher effective precision, and therefore
higher f-measure, only for k=2.

Pronunciation distance is probably a more typical of real-
istic name-matching scenarios than simple Levenshtein dis-
tance, since name variations frequently arise from alterna-
tive conventions for transcribing similar phonetic forms.Ta-
bles 3, 4, and 5 set forth the results for pronunciation dis-
tance when the pronunciation model is available for deter-
mining pivots. BKT and FBKT both have 100% recall, but
Soundex also has a high recall, 76%, for k=0 and an high
effective precision only slightly lower than BKT.

Finally, tables 6, 7, and 8 show the results of retrieval
with the same similarity criterion but with the pronunciation
model unavailable to the pivot-based methods, which there-
fore select pivots based on edit distance.

With the pronunciation model unavailable, Soundex has
highest recall for k=0, partition is highest for k=1, and par-
tition has the highest effective f-measure for k=1 or 2 (al-
though BKT has slightly higher recall for k-2).

Discussion
The empirical evaluation indicates that no single candidate-
retrieval algorithm is best. When the source of name varia-

Table 3: Retrieval results with pronunciation distance, pro-
nunciation model available at indexing time, and k=0.

recall precision eff-prec eff-f-100
BKT 1 1 0.1223 0.933

FBKT 1 1 0.0076 0.436
partition 0.045 0.303 0.303 0.045
ngrams 0.5856 0.3081 0.3081 0.580

soundex 0.7568 0.8077 0.8077 0.757

Table 4: Retrieval results with pronunciation distance, pro-
nunciation model available at indexing time, and k=1.

recall precision eff-prec eff-f-100
BKT 1 0.016 0.0076 0.436

FBKT 1 0.1316 0.0073 0.426
partition 0.5346 0.0159 0.0159 0.404
ngrams 0.3823 0.0781 0.0781 0.368

soundex 0.3462 0.258 0.258 0.345

Table 5: Retrieval results with pronunciation distance, pro-
nunciation model available at indexing time, and k=2.

recall precision eff-prec eff-f-100
BKT 1 0.0103 0.0063 0.390

FBKT 1 0.023 0.0085 0.464
partition 0.6844 0.0098 0.0098 0.407
ngrams 0.1707 0.0858 0.0858 0.169

soundex 0.1082 0.3507 0.3507 0.108

Table 6: Retrieval results with pronunciation distance, pro-
nunciation model not available at indexing time, and k=0.

recall precision eff-prec eff-f-100
BKT 0.0631 0.175 0.0088 0.0404

FBKT 0 0 0 0
partition 0.045 0.303 0.303 0.0453
ngrams 0.5856 0.3081 0.3081 0.5804

soundex 0.7568 0.8077 0.8077 0.7572

Table 7: Retrieval results with pronunciation distance, pro-
nunciation model not available at indexing time, and k=1.

recall precision eff-prec eff-f-100
BKT 0.4964 0.0051 0.0028 0.1808

FBKT 0.3111 0.0328 0.002 0.1229
partition 0.5346 0.0159 0.0159 0.4040
ngrams 0.3823 0.0781 0.0781 0.3681

soundex 0.3462 0.258 0.258 0.345

Table 8: Retrieval results with pronunciation distance, pro-
nunciation model not available at indexing time, and k=2.

recall precision eff-prec eff-f-100
BKT 0.7162 0.0058 0.0037 0.2464

FBKT 0.61 0.0094 0.0042 0.2512
partition 0.6844 0.0098 0.0098 0.4070
ngrams 0.1707 0.0858 0.0858 0.1690

soundex 0.1082 0.3507 0.3507 0.1089

tions is purely orthographic, e.g., OCR or transcriptions er-
rors, Levenshtein distance and its variants are likely to best
model the underlying variability. The empirical evaluation
suggests that under these circumstances partition filtering is
the best choice if one or more values of k can be specified a
priori of time or multiple indices are acceptable (since each
partition index is for a specific value of k). If k can’t be spec-
ified a priori and a single index is required, BKT or FBKT
are preferable. If time is critical, ngrams may be acceptable
for low k. For edit distance and k=0, ngrams was observed
to be 20 times faster than partition and has an effective f-
measure that is actually slightly higher.

If the source name variations reflect an underlying pho-
netic variability, then the best index depends on whether the
pronunciation model is available to the index. If a pronun-
ciation model is available, BKT and FBKT are preferable
since they permit 100% recall. If the pronunciation model is
unavailable, then Soundex is best for k=0 (i.e., homonyms),
and partition or BKT are best for k>0. FBKT’s extra filter-
ing actually reduces recall.

An important factor in the computation costs of pivot-
based methods is the variance of the data with respect to
the metric. As described above, the number of nodes visited
in a traversal of a BKT is exponential in the height of the
tree (since each additional level requires searching2k + 1
as many nodes as on the previous level). A larger variance
means a higher branching factor and therefore a shallower
tree.

Unfortunately, the mean pairwise Levenshtein distance
between members of the U.S. Census last name collection
is about 10.34, with a standard deviation of only about 2.34.
This results relatively narrow and deep BKT trees (a BKT on
10,000 typical names has a depth of 22). Better performance
could be expected with distance metrics having a wider vari-
ance.

While Soundex was competitive in recall only under one
condition—finding close phonetic matches in the absence of
a complete pronunciation model—Soundex indexing was 2
to 4 orders of magnitude faster than the pivot-based ethods.
This suggests that development of more efficient indexing
methods based on phonetic keys would be a significant con-
tribution to the problem of efficient name variation detec-
tion. Ultimately, however, the best name variation detector
for a given task depends on the recall requirements and time
and space constraints specific to that task.

References
M. Bilenko, W. W. Cohen, S. Fienberg, R. J. Mooney, and
P. Ravikumar. Adaptive name-matching in information in-
tegration.IEEE Intelligent Systems, 18(5):16–23, 2003.

W. A. Burkhard and R. M. Keller. Some approaches to
best-match file searching.Commun. ACM, 16(4):230–236,
1973.

M. Bilenko and R. Mooney. Employing trainable string
similarity metrics for information integration, 2003.

K. Branting. A comparative evaluation of name-matching
algorithms. InNinth International Conference on Artificial

Intelligence and Law (ICAIL 2003), pages 224–232. ACM
Press, 2003.

Ricardo A. Baeza-Yates and Gonzalo Navarro. Fast ap-
proximate string matching in a dictionary. InString Pro-
cessing and Information Retrieval, pages 14–22, 1998.

Edgar Chavez, Gonzalo Navarro, Ricardo A. Baeza-Yates,
and Jose L. Marroquin. Searching in metric spaces.ACM
Computing Surveys, 33(3):273–321, 2001.

W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A compar-
ison of string distance metrics for name-matching tasks. In
Proceedings of the IJCAI-2003 Workshop on Information
Integration on the Web, pages 73–78, Acapulco, Mexico,
August 2003.

W. Dizard. Obsolete algorithm tangles terrorst/criminal
watch lists. Government Computer News, 23(12), August
17 2004.

T. Gadd. Phonix: The algorithm.Program, 24(4), 1990.

D. Gentner and K. Forbus. MAC/FAC: A model of
similarity-based retrieval. InThirteenth Annual Conference
of the Cognitive Science Society, pages 504–509, 1991.

D. Gusfield.Algorithms on Strings, Trees, and Sequences.
Cambridge University Press, 1999.

Victoria J. Hodge and Jim Austin. An evaluation of pho-
netic spell checkers.

M. A. Jaro. Probabilistic linkage of large public health data
files. Statistics in Medicine, 14(5–7):491–498, 1995.

D. E. Knuth. Fundamental Algorithms, volume III of The
Art of Computer Programming. Addison-Wesley, Reading,
Massachusetts, 1975.

Alvaro E. Monge and Charles P. Elkan. An effi-
cient domain-independent algorithm for detecting approx-
imately duplicate database records. InProceedings of the
SIGMOD 1997 Workshop on Research Issues on Data Min-
ing and Knowledge Discovery, pages 23–29, Tuscon, AZ,
May 1997.

G. Navarro. A guided tour to approximate string matching.
ACM Computing Surveys, 33(1):31–88, March 2001.

G. Navarro and R. Baeza-Yates. Very fast and simple ap-
proximate string matching.Information Processing Let-
ters, 72:65–70, 1999.

L. Philips. Hanging on the metaphone.Computer Lan-
guage Magazine, 7(12), December 1990.

L. Philips. The double metaphone search algorithm.
C/C++ Users Journal, 18(1), June 1 2000.

Eric Sven Ristad and Peter N. Yianilos. Learning string-
edit distance.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(5):522–532, 1998.

Dong-Ho Shin and Byoung-Tak Zhang. A two-stage re-
trieval model for the TREC-7 ad hoc task. InText REtrieval
Conference, pages 439–445, 1998.

R. Taft. Name search techniques: New york state identifi-
cation and intelligence system. Technical Report 1, State
of New York, 1970.

W. E. Winkler. The state of record linkage and current re-
search problems. Technical report, Statistical Research Di-
vision, U.S. Census Bureau, Washington, DC, 1999.
J. Zobel and P. Dart. Phonetic string matching: lessons
from information retrieval.SIGIR Forum, 166–172, 1996.

