Automated Acquisition of User

Preferences
L. Karl Branting Patrick S. Broos
Department of Computer Science Department of Astronomy
University of Wyoming Pennsylvania State University
Box 3682 0525 Davey Laboratory
Laramie, Wy 82071 University Park, PA 16802
(307) 766-4258 (814) 863-5505
karl@index.uwyo.edu patb@astro.psu.edu

Abstract

Decision support systems often require knowledge of users’ preferences.
However, preferences may vary among individual users or be difficult for users
to articulate. This paper describes how user preferences can be acquired in the
form of preference predicates by a learning apprentice system and proposes two
new instance-based algorithms for preference predicate acquisition: 1ARC and
Compositional Instance-Based Learning (CIBL). An empirical evaluation using
simulated preference behavior indicated that the instance-based approaches are
preferable to decision-tree induction and perceptrons as the learning component
of a learning apprentice system if representation of the relevant characteristics
of problem-solving states requires a large number of attributes, if attributes
interact in a complex fashion, or if there are very few training instances. Con-

versely, decision-tree induction or perceptron learning is preferable if there are a

Automated Acquisition of User Preferences 2

small number of attributes and the attributes do not interact in a complex fash-
ion unless there are very few training instances. When tested as the learning
component of a learning apprentice system used by astronomers for schedul-
ing astronomical observations, both CIBL and decision-tree induction rapidly

achieved useful levels of accuracy in predicting the astronomers’ preferences.

1 Introduction

A central impediment to the construction of knowledge-based systems is the high cost
of knowledge base development and maintenance. One approach to reducing these
costs is to design systems that can acquire knowledge by observing human problem-
solving steps during normal use of the system. Systems that engage in this form
of learning are termed learning apprentice systems [Mitchell et al., 1985]. Learning
apprentice systems have been developed for VLSI design [Mahadevan et al., 1993, ac-
quisition of “interface agents” [Maes and Kozierok, 1993], and calendar management
[Dent et al., 1992].

An important form of knowledge that can be acquired by observing users’ decisions
is knowledge of users’ preferences. In configuration tasks such as design or scheduling,
for example, there may be numerous configurations that satisfy all applicable hard
constraints. Users may nevertheless strongly prefer some configurations to others.
For example, in document layout there are typically countless arrangements in which
all textual and graphical elements fit within the dimensions of the page and no two

elements occupy the same space. However, these arrangements may differ significantly

Automated Acquisition of User Preferences 3

in balance, contrast, emphasis, and other factors of importance to editors and graphic
designers. Choosing among layouts requires a model of the relative desirability of
layouts as a function of these factors. Similarly, in the domain of scheduling ground-
based telescope observations there are typically many different schedules that satisfy
all hard constraints (such as not pointing the telescope at the sun or below the horizon,
not scheduling two observations at the same time, etc.). However, such schedules may
differ significantly in factors such as the airmass,' research priority of each scheduled
observation, or total telescope slew time. Choosing among such schedules requires a
model of the relative desirability of schedules as a function of their relevant attributes.

Automated acquisition of users’ preferences is particularly important when users
differ in their individual preferences or are unable to articulate the precise preference
criteria that they use. Under these circumstances the most promising approach is
to develop a learning apprentice system capable of forming “personalized knowledge-
based systems” [Dent et al., 1992].

The approach to learning-apprentice acquisition of user preferences described in
this paper is appropriate for a variety of tasks—typified by design and configuration
problems—in which (1) users can identify the relevant characteristics of problem-
solving states, (2) these state characteristics can be adequately represented as an
attribute vector, but (3) users differ as to or are unable to articulate evaluation

criteria for problem solving states in terms of these attributes.

IThe airmass of an observation is a measure of the amount of atmosphere between the star and
the observer. Airmass can be minimized by observing a star at the time midway between its rising

time and setting time.

Automated Acquisition of User Preferences 4

The next section describes previous approaches to the problem of acquiring pref-
erence criteria and proposes two novel algorithms for this task: 7ARC and Compo-
sitional Instance-Based Learning (CIBL). Section three describes a series of learning
experiments that identify the factors that control the relative performance of 1ARC
and CIBL in comparison to decision-tree induction and perceptron learning. Section
four describes a prototype application of preference learning in an advising system
for astronomical scheduling, explains why acquisition of user preferences is important
for an automated assistant for this task, and presents preliminary results indicating

that automated preference acquisition is feasible for tasks of this type.

2 Techniques for Acquiring User Preferences

Knowledge of users’ preferences can be expressed as a preference predicate [Utgoff and Saxena, 1987]
Py(z,y) = [Q(z) > Q(y)] = “state z is preferred to state y”, where ()(s) is an evalu-

ation function that expresses the “quality” of state s. Information about P can be

acquired by a learning apprentice in the form of pairs (z,y) such that Pgy(x,y). For

example, each time a learning apprentice suggests a state s; and the user rejects s; in

favor of some other state sy, the apprentice has an opportunity to acquire the training

instance Pg(sz,s1). A learning apprentice can therefore acquire a user’s criteria for

the relative desirability of alternative states by learning a preference predicate Py

from a set of training instances Py(s;, s;) produced by the user during normal use of

the system.

Previous approaches to acquisition of preference predicates from sets of training

Automated Acquisition of User Preferences 5

instances have used inductive learning methods to form generalizations from sets of
training instances [Utgoff and Saxena, 1987, Utgoff and Clouse, 1991]. One approach
has been to use decision tree induction algorithms, such as ID3 [Quinlan, 1986], to
induce a general representation for Pp. An alternative approach, termed the state
preference method, uses parameter adjustment to learn a set of feature weights W
such that for every training instance, Py(z,y), W(F(z) — F(y)) > 0, where F(n) is
a vector of numeric attributes representing state n [Utgoff and Clouse, 1991]. The
state-preference method can be implemented through perceptron learning.

However, these approaches are not well-suited to all possible preference predi-
cates. The state preference method presupposes that the underlying evaluation func-
tion () has an accurate linear approximation. However, in many domains preference
predicates have no linear approximation [Callan et al., 1991]. Decision tree induc-
tion algorithms such as ID3 are suitable for nonlinearly separable data. However,
the performance of decision tree induction algorithms has been shown to be some-
times weaker than that of instance-based algorithms when the training set is sparse
or the concept being learned is “irregular” [Aha, 1992]. Under these circumstances,

instanced-based learning methods are sometimes more effective.

2.1 Instance-Based Learning of Preference Predicates

Instance-based learning (IBL) is a strategy in which concepts are represented by ex-
emplars rather than by generalizations induced from those exemplars [Aha, 1990,

Stanfill and Waltz, 1986]. Perhaps the simplest form of instance-based learning is

Automated Acquisition of User Preferences 6

k-nearest-neighbor (k-NN) classification, which classifies a new instance according to
the majority classification of its k£ nearest neighbors in feature space. In most recent
IBL systems, k =1 [Aha, 1990].

1ARC'is a 1-NN strategy for learning preference predicates that uses a representa-
tion of training instances as arcs in feature space. For example, on a two dimensional
feature space S = R?, instances {Pg(A, B), Po(C, D), Po(E, F)} can be represented
as shown in Figure 1 by arcs A<_B, C<_D, and EF (where Xy= Py(X,Y)).

Ranking a new pair of objects, X and Y, is equivalent to determining whether
Po(X,Y) or Py(Y, X) is satisfied. The 1ARC algorithm begins by finding the train-
ing instance that best matches the hypothesis Py(X,Y) = X<_Y. The dissimilarity
between XFY and a training instance is measured by the sum of the Euclidean dis-
tances between (1) Y and the tail of the training arc and (2) X and the head of the
training arc. The dissimilarity between)é_Y and the training arc that it matches most
closely, i.e., for which the dissimilarity is least, is a measure in the confidence in the
hypothesis Py(X,Y). In Figure 1, for example, the training arc EFF best matches
XY with a dissimilarity of dist(Y, F') + dist(X, E) represented by the dotted lines.

In the same way, 1ARC then finds the best match and confidence measure for
the alternate hypothesis Pgy(Y, X). The hypothesis with the strongest measure of
confidence determines 1ARC’s estimate of the ranking between X and Y. In this case,
)é Y matches training arc EFF more strongly than Y?(matches any training arc, so
1ARC concludes that Py(X,Y).

A limitation of k-NN algorithms, such as 1ARC, when applied to the predicate

Automated Acquisition of User Preferences 7

featurel

feature2

Figure 1: The best match to)é_Y found by 1ARC.

learning task is that they are unable to exploit the transitivity of preference predi-
cates. For example, given the situation in Figure 1, it should be possible to conclude
Py(X,Y) by the reasoning “X is close to C; C' is preferred to D; D is close to A; A
is preferred to B; B is close to Y”. However, the majority vote policy of standard
k-NN methods does not permit reasoning involving the serial composition of multiple

instances.

2.2 Compositional Instance-Based Learning

CIBL (Compositional Instance-Based Learning) is an extension of 1ARC that permits
multiple training instances to be composed to rank a new pair of objects. Like
1ARC, CIBL ranks two new objects, X and Y, by determining whether it has greater
confidence in the path from X to Y or in the path from Y to X. CIBL differs from 1ARC
in that it can construct a path between two new objects by sequentially connecting

multiple training instances. CIBL uses the Dijkstra algorithm [Aho et al., 1974] to

Automated Acquisition of User Preferences 8

find the least-cost path, assuming that the path from the tail to the head of a training
instance has zero cost and all other portions of the path have a cost equal to their
Euclidean length. Such a path seeks to follow a contour of the underlying evaluation
function having positive slope.

For example, given the situation shown in Figure 2, CIBL begins by searching for
the minimum cost path from Y to X, supporting the hypothesis Py(X,Y’). The cost
of this path is the sum of the Euclidean lengths of the “gaps” G1, G2, and G3. In a
similar fashion, a path is constructed from X to Y. The path with lower cost (in this

case, the path from Y to X) determines the best estimate of the ranking of X and Y.

featurel

. G3

Y X

feature2

.F
Figure 2: The best match to hypothesis XY found by CIBL.

2.3 Characteristics of Arc Representation of Preference In-

stances

The arc representation of preference instances used by 1ARC and CIBL differs in

several important respects from the representations formed by the state-preference

Automated Acquisition of User Preferences 9

method and from decision trees. First, a single arc is sufficient to summarize an entire
linear region of feature space, i.e., the 1ARC procedure using a single arc parallel to
the gradient of a linear function will correctly rank any testing instance in terms of
that linear function.? By contrast, the standard method for applying decision trees
to numerical feature spaces, [Quinlan, 1986], (described in more detail below) entails
division of feature space into hyper-rectangular regions. For example, given a single
instance Pg(X,Y), this approach finds a hyperplane that divides feature space into
two regions: one containing X and one containing Y. A testing instance in which
each point is in a different region may be correctly ranked. However, if both points
are in the same region, then the rank of the points will always be the same regardless
of the relative position of the points. Thus, the ranking of such testing instances will
be no better than chance. As the number of training instances goes up, the number
of regions into which feature space is divided by decision-tree induction increases, and
the likelihood that both points in a testing instance are in the same region therefore
decreases. However, one would expect that decision-tree induction would have low
accuracy given small numbers of training instances.

A second characteristic of the arc representation of preference instances is that
it is not limited to linear quality functions, since it can include multiple arcs. By
contrast, the state-preference method is poorly suited to nonlinear quality functions.

Third, the arc representation has the advantage that it permits the inherent tran-

sitivity of preference instances to be exploited through the CIBL approach. A typical

2A proof of this assertion is set forth in Appendix A.

Automated Acquisition of User Preferences 10

Quality
A

- Feature value
F1 F2 F3 F4

Figure 3: A quality function Q of one feature and instances A,B,C,D, and E.

situation in which use of transitivity can increase accuracy is depicted in Figure 3,
which shows a quality function, Q, of one variable. The vertical axis is quality, and
the horizontal axis is the feature value. Q exhibits a change in the sign of its derivative
in the middle of the range depicted in the figure.

Suppose that we are given the following preference instances as training data:
Py(A,B), Py(B,C), Py(C,D), and Py(D,E). Under the standard approach to applying
decision trees to numerical feature spaces described in [Quinlan, 1986], each point P
in feature space would be represented as a 4-element vector v € {0,1}*, where the

first element is 1 if P > F'1 and 0 otherwise, the second element is 1 if P > F'2 and

Automated Acquisition of User Preferences

11

0 otherwise, etc., and where features F1, F2, F3, and F4, represent the midpoints

of the intervals between feature values of each point. For example, point A would

be represented as < 1,1,0,0 >, since A is greater than F1 and F2, but less than

F3 and F4. Similarly, B would be represented as < 1,1,1,0 >. Preference instance

Py (A,B) would therefore be represented as < A, B,+ >=< 1,1,0,0,1,1,1,0,+ >

and < B, A,— >=<1,1,1,0,1,1,0,0, — >. The five training instances would then

be represented as shown in Figure 4.

F1 F2 F3 F4 F5 F6 FT7 F8 classification
Pp(AB) 1 1 0 0 +
Pp(BC) 1 1 1 0 +
Py(CD) 1 0 0 1 +
PyDE) 1 1 1 0 +
Po(BAA) 1 1 1 0 -
Pp(CB) 1 0 0 0 —
Pp(D)C) 1 1 1 0 -
Po(ED) 0 0 0 1 -

Figure 4: Representation of preference instances Py(A,B), Po(B,C), Po(C,D), and

Py(D,E) for decision-tree induction.

If ID3 is run on these training instances, the decision tree shown in Figure 5 is

obtained: This decision tree incorrectly classifies the pair (B,D) as —. In effect, ID3

Automated Acquisition of User Preferences 12

S
o
9\
)
9/
s
A

Figure 5: Decision tree generated by ID3.

has formed the generalization that B is less than anything except C and E. Nothing in
the decision-tree induction process is able to exploit the inference from Py (B,C) and
Py(C,D) that Py(B,D). Similarly, 1ARC is unable to make this inference. However,
CIBL would correctly classify (B,D) by concatenating C’?) and BFC, shown in Fig-
ure 6. This example suggests that CIBL should be more accurate than decision-tree
induction for quality functions having changes in the sign of their derivative.

Finally, a potential weakness of the instance-based approaches is that both depend
on a Euclidean distance function. Instance-based methods that use Euclidean distance
functions typically are sensitive to irrelevant features [Aha, 1989, Aha and Goldstone, 1990].

In summary, the characteristics of the arc representation of preference instances

Automated Acquisition of User Preferences 13

Quality

> Feature value

Figure 6: An arc representation of training instances Py(A,B), Py(B,C), Py(C,D),

— —
and Py (D,E). Concatenating C'D with BC' permits CIBL to conclude that Pg(B,D).

Automated Acquisition of User Preferences 14
lead to the following hypotheses:

1. CIBL outperforms 1ARC and decision-tree induction for quality functions with

many derivative sign changes.

2. The state-preference method is much less accurate than the instance-based
methods for quality functions that are poorly approximated by linear functions

(although highly accurate for linear quality functions).

3. Introduction of irrelevant features lowers the accuracy of the instance-based

methods more than the accuracy of decision-tree induction.

4. The instance-based approaches outperform decision-tree induction when there

are small numbers of training instances.

The next section describes an empirical evaluation designed to test these hypotheses.

3 Empirical Evaluation

To test the hypotheses set forth in the previous section, the ranking accuracy of IARC
and CIBL was compared to the accuracy of decision-tree induction and the state-
preference method on a variety of artificial quality functions of varying “complexity”,
i.e., varying numbers of derivative sign changes (see Figure 7). With the exception
of Qg, all of the quality functions were defined on the feature space S = [0, 1] x [0, 1].
Functions (); and (), are linear functions, with identical and greatly differing feature

importances, respectively. (03 is an exponential.)y through ()3 are all functions with

Automated Acquisition of User Preferences 15

no changes is derivative sign. ()4, a quadratic, ()5, crossed planes, and ()7, a 2-cycle
sinusoid, all involve derivative sign changes in both features. ()7, is the most complex
function in the sense that it has multiple changes in derivative sign in each dimension.
Qs, a folded plane, has a derivative sign change in a single dimension.

The decision-tree induction method tested was ID3, modified to handle real-valued
features in the manner described above. The state-preference method was tested using
a standard implementation of perceptron learning. For each () function, instances
of the associated preference predicate, Pgy(X,Y"), representing the knowledge “X is
preferred over Y’ for X,Y € S were randomly generated.®> Each model was trained
on a set of instances of size ||T'S|| € {2,8,32,128} and was then tested on a different
set of instances of size 1000. Each < model, @, ||T'S|| > triplet was trained and tested
four times and the mean error rate was calculated by counting the incorrect rankings
in the four tests.

The accuracy of the learning methods with 128 training instances is summarized

3For ID3, each Pg(X,Y) was encoded as a positive and a negative instance of the concept “is pre-
ferred to” using a feature vector of real values. In addition to the standard features described above,
ID3’s instance representation included the normalized direction of the instance and its magnitude:
<HVX,(X-YV/IX-Y|,|X-Y]| >

< XY,V - X)/IX - Y], |X - Y] >

Encoding for perceptron learning was in the form of the pairs:

<+, Y, X >

<X, Y >

Automated Acquisition of User Preferences

Q1(f1, f2)
Q2(f1, f2)
Q3(f1, f2)

Qa(f1, f2)

Qs(f1, f2)

Qs(f1, f2)

Q7(f1, f2)

Qs(f1, f2, f3)

fit fo

fi+10f

exp(fi + f3)

(fi —=0.5)* + (f2 — 0.5)?

{ fo if f1 <0.5

1 — fo otherwise

fi+ f2 if f1 <0.5
1+ fo — f1 otherwise

sin(2m(f1 + f2))

(f1 =0.5)% + (f2 — 0.5)

16

1x1 plane
1x10 plane
exponential

quadratic at (0.5,0.5)

crossed planes

folded plane

2-cycle sinusoid

2-D quadratic in 3-D

Figure 7: Quality functions of varying complexity.

in Figure 8. Consistent with hypothesis 1, CIBL was more accurate than the other

learning methods in quality functions that changed derivative sign in both dimensions,

i.e., in the quadratic (Q4), crossed-planes (Q)5), and the 2-cycle sinusoid (@Q7). CIBL’s

accuracy was significantly higher than that of ID3 for the quadratic (P = .0066) and

sinusoid (P = .0002), but the difference was not clearly significant for the crossed-

planes (P =.0723). There was no significant difference in accuracy between CIBL and

ID3 for the folded plane (Qs), which changes derivative sign in only one dimension.

CIBL was significantly more accurate than 1ARC on the quadratic (P = .0066), folded

plane (P = .0221), sinusoid (P =.0021), and 2-dimensional quadratic with an added

irrelevant feature (Qg)(P = .0003). This provides confirmation for the hypothesis

Automated Acquisition of User Preferences

! A
2
0.9 o g ®
o R
O
O
o8 L o X y
X © g
<o
oy
g 074+
5
3
< X
0.6 -
05 | A A
A
A
0.4 } } } } } } {
FL F2 F3 F4 F5 F6 F7 F8

Quiality function

o larc

ocibl

A perceptron
x ID3

17

Figure 8: Accuracy of learning methods in learning QQ functions of varying complexity.

Automated Acquisition of User Preferences 18

that composing multiple instances can lead to improved accuracy. By contrast, ID3
was significantly more accurate than CIBL for the 1x1 plane (@) and 1x10 plane
(Q2) (P =.0021 and P = .0041 respectively).

Hypothesis two, that perceptron learning is much less accurate than the instance-
based methods for quality functions without accurate linear approximations but
highly accurate for linear quality functions, was confirmed as well. Perceptron learn-
ing performed almost perfectly on the linear functions, (0; and (), but no better
than chance on the functions that vary in derivative sign in both dimensions, @4, @5,
@7, and Qg. There were no significant differences in accuracy among the learning
methods for the exponential (@3) and folded-plane (Q6).

The third hypothesis, that introduction of irrelevant features lowers the accuracy
of the instance-based methods more than the accuracy of decision-tree induction,
was confirmed by the 2-dimensional quadratic with an added irrelevant feature (Qg).
Although CIBL significantly outperformed ID3 in the quadratic with no irrelevant
features (Q4), the two methods were not significantly different when an irrelevant
feature was added.

Hypothesis four is that the instance-based methods are more accurate than decision-
tree induction given small numbers of training instances. This hypothesis is satisfied
in functions that vary in derivative sign in both dimensions, because the instance-
based methods outperform decision-tree induction for all training set sizes tested.
More interesting are the linear quality functions. As shown in Figure 9 and Figure 10,

with only two training instances the instance-based methods were significantly more

Automated Acquisition of User Preferences 19

0.45
0.4
0.35
0.3
—o— larc
g 02573 —— cibl
©
= 0.2 | —A— D3
5 .
o —— perceptron

0.15

0.1

0.05 -

0 ‘ \)
2 8 32 128

Training set size

Figure 9: Error rate as a function of training set size for a 1x10 plane.

accurate than ID3 on both linear functions and more accurate than perceptron learn-
ing for the 1x1 plane. Given eight training instances, the instance-based approaches
are more accurate than ID3 on the 1x1 plane and more accurate than perceptron
learning for the 1x10 plane. However, for 32 or more training instances the error
rate on the linear functions for ID3 and perceptron learning was negligible. Figure 11
shows that the instance-based methods were more accurate than the other methods
on the folded plane given only two training instances, but the relative performance
of the various methods converge with larger numbers of training instances.
Intuitively, one would expect that quality functions over feature spaces with larger
numbers of dimensions would require more instances to learn than quality functions

over feature spaces with fewer dimensions. This suggests that CIBL would perform

Automated Acquisition of User Preferences

0.4
0.35
0.3 1
0.25 - —O— larc
) —{1—cibl
T 0.2 1
= —A— D3
(]
5 015 L —»— perceptron

0 '
2 8 32 128

Training set size

Figure 10: Error rate as a function of training set size for a 1x1 plane.

0.4

0.35

0.3

—O— larc
—1—cibl
—A—1D3

—>— perceptron

0.25 -

0.2

Error rate

0.15 -

0.1 -

0.05

0 ‘ \ !
2 8 32 128

Training set size

Figure 11: Error rate as a function of training set size for a folded plane.

Automated Acquisition of User Preferences 21

40 T T T T

30

20

Error Rate (%)

0 . . . | . . . | . . . | . . . |

2 4 6 8 10
Feature Space Dimensionality
500 random pairs tested

Figure 12: Cumulative error rate of CIBL and ID3 for linear () in feature spaces of

dimension 2, 3, 5, and 10.

better relative to decision tree induction as the number of dimensions increases. To
test this hypothesis, the ability of CIBL and ID3 to acquire a preference predicate was
compared for a linear () over features spaces of dimensionality 2, 3, 5 and 10, with
training set size of 128 and testing set size of 500. As with the earlier experiment,
both training and testing instances were uniformly distributed through the feature
space. The results, set forth in Figure 12, show that for linear) ID3 has a lower
error rate in feature spaces of dimensionality less than 5, the error rate is comparable
for dimensionality equal to 5 and CIBL has a lower error rate in feature spaces of

dimensionality greater than 5.

Automated Acquisition of User Preferences 22

In summary, the results of the empirical evaluation provide initial confirmation

for each of the hypotheses set forth in the previous section.

4 Acquisition of Preference Predicates for Astro-

nomical Scheduling

This section describes a prototype application of preference learning in an advising
system for astronomical scheduling. The purpose of the prototype is to illustrate the
role of user preferences in configuration tasks typified by scheduling and to demon-

strate the feasibility of automated preference acquisition in such tasks.

4.1 The Telescope Scheduling Task

At most ground-based observatories, each observer is responsible for planning the
observations that are made during his or her allotted observing time. An experienced
observer typically has a catalog of desired observations that far exceeds the allotted
time. As a result, optimizing the use of an astronomer’s limited observation time is
essential to the astronomer’s research productivity.

Astronomers typically construct schedules incrementally, starting with an empty
schedule and adding one object at a time until the allotted observing time is filled. If
the optimal placement of a new observation is inconsistent with some observations in
the current partial schedule, the astronomer typically (1) performs a repair operation

in which the inconsistent observations are moved slightly from their optimal placement

Automated Acquisition of User Preferences 23

to accommodate the new observation, and/or (2) places the new observation in a non-
optimal location.

In this process of incremental schedule construction, astronomers must necessarily
make trade-offs among the various relevant schedule attributes. Astronomers typi-
cally have little uncertainty about the optimal value of each of these characteristics
considered in isolation. For example, ignoring all other considerations, the airmass
of each observation should be minimized. However, informal discussions with as-
tronomers suggest that they cannot easily articulate the criteria they use in making
these trade-offs. In particular, astronomers can neither specify a set of rules for choos-
ing between any two proposed schedules nor formulate a merit function that measures
the relative quality of schedules. Moreover, individual astronomers appear to differ
significantly in their preferences.

Previous approaches to automated telescope scheduling [Johnston, 1989]

[Barrett and Thomas, 1991] have cast the problem as a constraint satisfaction prob-

lem (CSP). The CSP framework provides a useful representation of hard constraints.

Many such scheduling systems also provide facilities for encoding preferences and for

using those preferences to guide a state space search [Zweben et al., 1992, Feldman and Golumbic, 1989,
Freuder, 1989, Dhar and Ranganathan, 1990, Johnston, 1989]. For example, in SPIKE

[Johnston, 1989], a system used to schedule observations on the Hubble Space Tele-

scope, hard constraints and preferences are encoded as suitability functions taking on

non-negative values. All the suitability functions are multiplied together to form a

total suitability function that is used to choose between proposed schedules. However,

Automated Acquisition of User Preferences 24

any such a priori encoding of preferences presupposes the exact tradeoffs that will be

made between scheduling preferences.

4.2 The Observing Assistant Learning Apprentice

The Observing Assistant* is a decision support system that assists astronomers in
scheduling ground-based telescope observations. Starting with an empty schedule,
OA suggests refinements to the current partial schedule by adding one object from
the astronomer’s catalog of desired observations.

The set of possible refinements of a partial schedule, S, consists of each placement
into S of an unscheduled object from the astronomer’s catalog that results in a new
schedule satisfying all hard constraints. In general, there are a very large number of
possible refinements since there are many new observations that could be added, each
new observation could be scheduled at almost any time and, indeed, the observations
already in the schedule could be rearranged in many ways. OA uses two methods to
limit the number of possible refinements it considers in order to reduce computation
time in an interactive environment and to avoid overloading the user with choices.

First, when a refinement is created by inserting an unscheduled object into S, the
order of the observations already in S is not altered. Second, once an unscheduled
object has been inserted into S, the times of all the observations are adjusted to min-
imize the mean airmass while preserving the order of the observations. This scheme

does not emulate all of the scheduling strategies employed by humans. For example,

*A more detailed description of the Observing Assistant is set forth in [Broos, 1993].

Automated Acquisition of User Preferences 25

humans may employ complex backtracking steps such as switching the position of
two objects already in the schedule. A general-purpose schedule editor in OA allows
the human to make complex changes to the schedule by hand.

After a set of refinements to the current partial schedule are generated, OA uses
its model of the astronomer’s preference predicate to sort the set. The highest ranked
refinement is then suggested to the user. If the user rejects the proposed refinement s;
in favor of some other refinement s;, OA records the ordered pair (s;, s;) to represent
the fact that a preference for s; over s; is an instance of the user’s preference predicate,
Py (s, si).

For the purposes of ranking alternative schedules each schedule is represented as

a vector of the following real-valued attributes:’
e the duration of the newest observation added

the maximum airmass of the newest observation

the optimal airmass of the newest observation, i.e., the lowest airmass achieved

by the newest object during the entire night

the priority of the newest observation

the average airmass of the other objects in the schedule.

An empty schedule is represented as a set of time segments representing periods

when observing is possible, each of which is specified by its start time and length.

5Several additional attributes, such as total telescope slew time, would need to be added for a

complete model of the factors considered by astronomers in scheduling.

Automated Acquisition of User Preferences 26

Multiple time segments permit the scheduling of several nights simultaneously if de-
sired and permit the representation of planned idle periods during a single night.
A catalog of objects that can be scheduled is given in the form of a simple table
whose format was designed to be compatible with the catalogs currently in use by
the telescope-aiming computer at the Wyoming Infrared Observatory.®

Suppose the current schedule S contains three objects A, B, and C.
Schedule S: aa.bbb....cc... dots represent gaps

Suppose also that the objects remaining in the catalog are X, Y, and Z. Then OA

will put the twelve schedules below into the set Refinements.

XXX.aa.bbb....cc... | Yaabbb....cc... | ZZabbb...cc...
..aaXXX.bbb....cc... | aaYbbb....cc... | aa.ZZbbb..cc...
..... aabbbXXX..cc... |aa.bbb..Y.cc... |aa.bbb...ZZcc..
..... aa.bbbceXXX.... |aa.bbb...ccY... |aa.bbb...ccZZ..

The gaps between objects (represented by dots) are the result of the airmass mini-
mization repair step. Once OA has generated the possible refinements shown above

it groups the refinements that involve the same new object and ranks each group. For

6Each object is represented in this format as follows:

Name of the object

e Right ascension coordinate

Declination coordinate

Duration of observation

Priority (HIGH, MEDIUM, or LOW).

Automated Acquisition of User Preferences 27

example, the refinements shown above would be grouped into three queues and each

would be sorted using OA’s preference function model.

QUEUE FOR X QUEUE FOR Y QUEUE FOR Z

1 .XXX.aa.bbb....cc... | 1 aa.bbb..Y.cc... | 1 aa.bbb...ZZcc..
2 ..aaXXX.bbb....cc... | 2 aa.bbb...ccY... | 2 aa.bbb...ccZZ..
3 ... aabbbXXX..cc... | 3 aaYbbb....cc... | 3 aa.ZZbbb..cc...
4 ... aa.bbbceXXX.... | 4 Yaabbb....cc... | 4 ZZabbb...cc...

Once the best placement for each new object is known (the top row above), those
best placements are ranked with respect to each other, forming a top-level queue as
shown below. The top ranked refinement in the top-level queue is OA’s estimate of

the best possible refinement to schedule S.

TOP-LEVEL-QUEUE
1.... aa.bbb..Y.cc...

2 ... aa.bbb...ZZcc..

3 .XXX.aa.bbb....cc...

When a two-level set of queues containing schedule refinements is constructed as
described above, OA allows the user to browse the queues, correcting OA’s rankings if
desired. The user may browse through the top-level queue, examining the best place-
ment of each new object, or he may browse one of the placement queues, examining
all the possible ways to add a specific new object.

When browsing any queue, the entries in the queue are presented to the user in
pairs to facilitate comparison. The pair of entries displayed consists of a marked entry
and a browse entry (see Figure 13). The marked entry is the one the user currently
deems to be the best one in the queue. The browse entry is the one the user is
currently comparing to the marked entry. The browsing menu has commands NEXT

and PREV to change the browse entry to the next or previous entry in the queue.

Automated Acquisition of User Preferences 28

The command MARK will assign the role of marked entry to the schedule currently
displayed as the browse entry. When the queue is first created, the marked entry is

the schedule that is ranked highest by OA.

SCHEDULE EXTENSIONS
**MARKED ENTRY*x*

02:00 12:00
| o |
aaaa bbbbbbbb YYYY cccc
| o |
Newest object Y scheduled at 09:02 RA: 09:26 DEC: -4.0
I
I
Duration 00:30 01:00
Max Airmass 1.42 2.40
Optimal Airmass 1.42 2.40
Priority Low
Avg airmass of other objects 1.99

*x*BROWSE ENTRY#** ranked 3 of 3

02:00 12:00
| |
XXXXXXXX aaaa bbbbbbbb cccc
| o |
Newest object X scheduled at 02:24 RA: 02:57 DEC: -24.0

0:ACCEPT 1:NEXT 2:PREV 3:IGNORE 4:MARK 5:BROWSE_PLACEMENTS 6:ABORT 7

Figure 13: Browse Display

When the user leaves the top-level queue with the ACCEPT command, the sched-
ule in the marked entry display is accepted as the desired refinement to the current
schedule. When the user leaves the lower-level queue with the ACCEPT command,
the schedule in the marked entry display is substituted into the top-level queue. OA’s

preference learning component obtains a training pair each time the user corrects OA’s

Automated Acquisition of User Preferences 29

ranking of a queue by accepting a queue entry that was not top-ranked by OA.

4.3 Scheduling Experiments with Astronomers
4.3.1 Interactive Learning Experiment

The experiments using artificial quality functions indicated that CIBL always per-
forms at least as well as IARC and that the relative performance of CIBL and ID3
depends upon the nature of the underlying quality function @, the dimensionality
of the feature space, and the number of training instances. The second set of ex-
periments compared the relative effectiveness of CIBL to that of ID3 on the task of
learning an astronomer’s scheduling behavior in the context of the Observing Assis-
tant. Two different versions of OA were implemented: OA-CIBL, which used the
CIBL learning method; and OA-ID3, which used the ID3 learning method.

A typical observing catalog of astronomical objects was provided by the director of
the Wyoming Infrared Observatory at the University of Wyoming. An astronomer at
the University of Wyoming Department of Physics and Astronomy then scheduled this
catalog twice, once using OA-CIBL and once using OA-ID3. The catalog comprised
three nights of observations to be scheduled, so a total of six nights were scheduled
(three nights per catalog, two different learning methods). The six learning sessions
were interleaved so that the astronomer did not know which learning method was
in use. Each time the astronomer made a ranking decision, that is, each time the
astronomer expressed a preference for a particular schedule in a set of schedules, data

were collected on OA’s ranking of the schedule the astronomer preferred and the

Automated Acquisition of User Preferences 30

number of schedules the astronomer had to choose from.

The relative performance of the learning algorithms was measured in two different
ways. The first measure of performance was cumulative error rate, which indicates
how often each model failed to identify correctly the astronomer’s preferred schedule.
The cumulative error rate of CIBL was lower (37%) than that of ID3 (47%), but the
difference was not statistically significant.

The second measure of performance was a linear pay-out metric. If two preference
models, A and B, both rank a set of 30 schedules and model A assigns a rank of 3 to
the human’s preferred choice and model B assigns a rank of 27, it is reasonable to say
that model A performed better than model B even though neither model predicted the
human’s preferred choice. A linear pay-out metric is a more appropriate measure of
performance in situations in which a near miss is nearly as good as a correct answer.
We used a linear pay-out metric that rewards a model by % — 1 if the model
assigns the user’s first choice out of n objects a rank of m. This metric rewards a
scheduler by 4+1.0 when the user’s chosen schedule was ranked first and by —1.0 when
the user’s chosen schedule was ranked last. The expected value of this metric for a
preference predicate model with no knowledge is zero. Figure 14 shows the cumulative
pay-out data for OA-CIBL and OA-ID3, indicating that both had about the same
ability to predict the astronomer’s behavior. The relatively high pay-out from both

methods—over 40 after 62 instances—indicates that both methods rapidly acquired

Automated Acquisition of User Preferences 31

a sufficiently accurate preference model to provide useful advice to the astronomer.”

100 g

80— -]

Cumulative Payout

CIBL 1
rrrrrrrrrrrr D3 E
— — — — Perfect Predictor |

0 20 40 60 80 100 120 140
User Decision Instance

Figure 14: Cumulative pay-out. The 45° line represents the cumulative payout of a

perfect model of the astronomer’s preference predicate.

4.3.2 Replay Experiments

In addition to directly measuring the relative performance of CIBL and ID3 as the
learning component of OA, the learning methods were compared on two sets of ap-

proximately 135 preference instances recorded from each of two different astronomers

"The slightly higher pay-out for OA-ID3, notwithstanding its somewhat lower accuracy, indicates

that the average magnitude of errors was somewhat greater for OA-CIBL.

Automated Acquisition of User Preferences 32

who used OA to schedule 6 nights of observations. These instances are examples of
the astronomers’ preference predicates.

In the first experiment, each astronomer’s preference instances were used to train
CIBL and ID3 separately using a learn-on-failure protocol. The two states contained
in each preference instance were given to the model (CIBL or ID3) for ranking, and
the model learned the instance only if it ranked the states incorrectly. The cumulative
error rates of the two models (astronomer #1: CIBL-21%, ID3-22%; astronomer #2:
CIBL-14%, ID3-21%) were not significantly different, confirming the result of the
interactive learning experiment described above that CIBL and ID3 had comparable
abilities to predict astronomer’s behavior.

The second replay experiment tested the hypothesis that different astronomers
use distinct preference predicates. The two sets of preference instances were each
randomly partitioned into two subsets. One partition was used to train a preference
predicate model. The model’s error rate was then measured on the task of predicting
the preferences contained in the other partitions. This experiment was performed
under twelve different configurations to cover all the possible permutations of three
configuration variables: the preference model used (CIBL or ID3); the source of the
training partition (astronomer #1 or astronomer #2); and the size of the training
partition (45, 68, or 90 instances). The experiment was repeated 10 times for each
testing configuration.

Over all 120 tests, the average error rate for ranking instances from the set used to

train the model (8.7%) was significantly lower than the average error rate for ranking

Automated Acquisition of User Preferences 33

instances from the other astronomer’s set (25.0%) (P = .00137). This indicates
that there was a significant difference between the scheduling behaviors of the two
astronomers we tested, confirming the hypothesis that different astronomers require

different preference models.

4.4 Scheduling Experiments Using Artificial Preference Pred-
icates

The final experiment tested whether the dependence of the relative performance of
CIBL and ID3 on the complexity of the underlying quality function (), which was
observed in an artificial domain, also applies when scheduling actual astronomical
observations. To test this hypothesis, OA-CIBL and OA-ID3 were rerun on the
catalog of observations using each of the quality functions set forth in Figure 15 as an
oracle in place of a human astronomer. As shown in Figure 16, the results confirmed
that CIBL’s performance relative to ID3 improves with increasingly complex @): ID3
is more accurate than CIBL for linear Q,® CIBL is slightly more accurate for quadratic

@, and CIBL is much more accurate for sinusoid Q).

8This result appears to be inconsistent with the artificial domain experiment that tested the
effect of dimensionality on ranking accuracy, in which ID3 and CIBL had comparable accuracy for
linear @ in a five-dimensional feature space. However, this disparity is attributable to the differences
between the two experiments: (1) the instances used for training and testing were random points in
feature space for the earlier experiment but were actual schedules for the later experiment and (2)
the task in the earlier experiment was to establish a binary ranking whereas the task in the later

experiment was to order a full set of schedule refinements.

Automated Acquisition of User Preferences 34

Qo = fi—fotfatfi—1Ts 5-D plane
Qo = —[(fi =1+ (fa—2)+(fz3 - 15)°

+(f1—0.5)* 4+ (f5 — 2)?] 5-D quadratic
Qu = sin(m\/f2+f+ 3+ 17+ f2) 5-D sinusoid

Figure 15: Quality Functions.

In summary, the Observing Assistant illustrates how the preference acquisition
task can arise in the context of a learning apprentice system. The interactive learning
experiments illustrated that preference predicate acquisition techniques can rapidly
acquire models of user preferences sufficiently accurate to provide useful advice, and
the second replay experiment provided evidence that different astronomers do in fact

apply different quality functions.

5 The Impact of Representation on Preference Pred-
icate Acquisition

The empirical evaluation indicates that the relative performance of instance-based
and inductive approaches to preference predicate acquisition depends on the dimen-
sionality of the feature space, the number of training instances, and the complexity of
the preference predicate Pg being acquired as measured by the underlying evaluation
function Q). However, the nature of (Q depends critically on the representation of

instances.

Automated Acquisition of User Preferences 35

80

60

40

Final Cumulative Payout

20

+1D3

[| XCiBL
L | OPerfect Predictor

Q9

Q10 Q1
Q Function

Figure 16: Cumulative pay-out of CIBL and ID3 with 5-D plane, quadratic, sinusoid

functions replacing the human astronomer.

If instances are represented in terms of raw observables, any quality function on

those instances is likely to be extremely irregular. For example, if chess positions are

represented purely in terms of the locations of each piece on the board, the evaluation

function will be extremely irregular, because changing the position of a single piece

can drastically alter the evaluation of the position. If instances are represented in

terms of derived or abstract features, however, the evaluation function may become

much smoother. For example, if chess positions are represented in terms of strategic

features such as control of files or pawn structure, or in terms of tactical features such

Automated Acquisition of User Preferences 36

as the existence of pins or the security of the king, an incremental change in a feature
will usually change the evaluation function only incrementally. The ideal instance
representation for the acquisition of preference predicates would include the quality
function Q itself as a derived feature.’

Thus, a quality function that is a highly irregular when applied to a low ab-
straction representation may become smooth when applied to a higher abstraction
representation. This suggests that a key issue in choosing between instance-based and
inductive approaches to acquisition of preference predicates is the nature of the rep-
resentation of the instances. If instances are represented at a low level of abstraction,
an instance-based approach like CIBL may be superior because of the irregularity
of the quality function when applied to such descriptions. Induction may be more

appropriate if instances can be represented in terms of more abstract features.

6 Conclusion

Acquisition of user preferences is important for a significant class of advising tasks,
typified by configuration tasks such as design or scheduling. Learning apprentice
acquisition of preference predicates is an appropriate technique for learning user pref-

erences when (1) users can identify the relevant characteristics of problem-solving

9A well-known illustration of the dependence of inductive learning techniques on the represen-
tation of instances is Quinlan’s experience that devising a set of derived features for chess board
positions sufficient to enable ID3 to induce a decision tree for “lost in 3-ply” required 2 person-months

[Quinlan, 1983].

Automated Acquisition of User Preferences 37

states, (2) these state characteristics can be adequately represented as an attribute
vector, but (3) users differ as to or are unable to articulate evaluation criteria for
problem solving states in terms of these attributes.

The scheduling experiments involving artificial preference criteria, the relative
performance of the preference predicate learning methods was found to depend on
(1) the complexity of the preference predicate Py being acquired as measured by the
underlying evaluation function @), (2) the dimensionality of the feature space, and (3)
the number of training instances. CIBL’s strategy of composing multiple instances
always led to accuracy equal to or higher than that of IARC. CIBL appears preferable
to ID3 as the learning component of a learning apprentice system if representation
of the relevant characteristics of problem-solving states requires more than five at-
tributes or if attributes interact in a complex fashion, i.e., if the quality function
has derivative sign changes in multiple dimensions, provided that all attributes are
relevant. Conversely, ID3 is preferable if there are fewer than five attributes and the
attributes do not interact in a complex fashion (i.e., the quality function has few
derivative sign changes) or if there are irrelevant attributes. Perceptron learning per-
formed extremely well for quality functions with accurate linear approximations, but
extremely poorly for quality functions with derivative changes in multiple dimensions.
Finally, the instance-based methods performed better than ID3 or perceptron learn-
ing for extremely small numbers of training instances (for extremely small numbers
of training instances 1ARC and CIBL are equivalent).

The scheduling experiments with astronomers indicated that both CIBL and ID3

Automated Acquisition of User Preferences 38

can be effective as the learning component of a learning apprentice system for acqui-
sition of preference predicates. Both CIBL and ID3 rapidly acquired a useful level
of accuracy when tested as the learning component of a learning apprentice used
by an astronomer for scheduling astronomical observations having five real-valued

attributes.

Acknowledgments

This research was supported in part by NASA Space Grant Graduate Fellowships
administered through the Wyoming Planetary and Space Science Center. The imple-

mentations of ID3 and perceptrons used in this research were by Ray Mooney.

Appendix A

Proof that a preference instance parallel to the gradient of a linear quality function
will correctly classify all instances with respect to the quality function under the
1ARC procedure.

Let Q(x1,...,x,) = YI, a;z; be a linear quality function of n features. The gra-
dient of Q is the vector G=< ay,...,a, >. A preference instance parallel to G in fea-
tures space must be of the form Py (A,B) = (< ui+-cay, ..., up+ca, >< uy, ..., uy >),
where ¢ is a positive constant. Let (W,Z2) = (< wy,...,w, >< 21,...,2, >) be a

-
testing instance. 1ARC ranks W and Z by finding whether AB more closely matches

Automated Acquisition of User Preferences 39

— — — —
W Z or ZW. The distance between AB and W Z is
dist(A, W) +dist(B,Z) =Y _[(u; + ca; — w;)* + (u; — 2)°]
i=1
— —
Similarly, the distance between AB and ZW is
dist(A, W) + dist(B, Z) = > [(u; + ca; — 2;)* + (u; — w;)?]
i=1
Thus, TARC will rank W as preferable to Z only if
> (s + cai — w;)* + (u; — 2)%) < Y _[(wi + ca; — 2z:)* + (u; — w;)?]

=1 =1

However, this inequality can be simplified to

n n
Z w;a; > Z 2;Q;
i=1 =1

which is equivalent to Q(W) > Q(Z).
Similarly, IARC will rank Z as preferable to W only if

an[(uZ + ca; — w;)? + (u; — %)% > an[(uZ + ca; — 2)? + (u; — w;)?]

which can be simplified to

n n
Z w;a; < Z Z;Q;
i=1 i=1

which is equivalent to Q(W) < Q(Z). Thus, the single training instance Pg(A,B)

correctly classifies all testing instances with respect to Q.

Automated Acquisition of User Preferences 40

References

[Aha, 1989] Aha, D. (1989). Incremental, instance-based learning of independent and
graded concepts. In Proceedings of the Sizth International Workshop on Machine

Learning, pages 387-391.

[Aha, 1990] Aha, D. (1990). A Study of Instance-Based Algorithms for Supervised

Learning Tasks. PhD thesis, University of California at Irvine.

[Aha, 1992] Aha, D. (1992). Generalizing from case studies: A case study. In Pro-

ceedings of the Ninth International Workshop on Machine Learning, pages 1-10.

[Aha and Goldstone, 1990] Aha, D. W. and Goldstone, R. L. (1990). Learning at-
tribute relevance in context in instance-based learning algorithms. In Twelfth An-

nual Conference of the Cognitive Science Society, pages 141-149.

[Aho et al., 1974] Aho, A., Hopcroft, J., and Ullman, J. (1974). The Design and

Analysis of Computer Algorithms. Addison-Wesley Publishing Co.

[Barrett and Thomas, 1991] Barrett, J. D. and Thomas, R. C. (1991). An algorithm
for the support of telescope microscheduling. Publications of the Astronomical

Society of the Pacific, 103:1218-1230.

[Broos, 1993] Broos, P. (1993). An expert system for telescope scheduling. Master’s

thesis, University of Wyoming.

Automated Acquisition of User Preferences 41

[Callan et al., 1991] Callan, J., Fawcett, T., and Rissland, E. (1991). Adaptive case-
based reasoning. In Proceedings of the Third DARPA Case-Based Reasoning Work-

shop, pages 179-190. Morgan Kaufmann.

[Dent et al., 1992] Dent, L., Boticario, J., McDermott, J., Mitchell, T., and
Zabowski, D. (1992). A personal learning apprentice. In Proceedings of Tenth
National Conference on Artificial Intelligence, pages 96-103, San Jose, CA. AAAI

Press/MIT Press.

[Dhar and Ranganathan, 1990] Dhar, V. and Ranganathan, N. (1990). Integer pro-
gramming vs expert systems: an experimental comparison. Communications of the

ACM, 33(3):323-336.

[Feldman and Golumbic, 1989] Feldman, R. and Golumbic, M. (1989). Constraint
satisfiability algorithms for interactive student scheduling. In Proceedings of the

International Joint Conference on Artificial Intelligence, pages 1010-1015.

[Freuder, 1989] Freuder, E. (1989). Partial constraint satisfaction. In Proceedings of

the International Joint Conference on Artificial Intelligence, pages 278-283.

[Johnston, 1989] Johnston, M. D. (1989). Knowledge based telescope scheduling.
In Heck, A. and Murtaghn, F., editors, Knowledge-Based Systems in Astronomy.

Springer-Verlag.

Automated Acquisition of User Preferences 42

[Maes and Kozierok, 1993] Maes, P. and Kozierok, R. (1993). Learning interface
agents. In Proceedings of Eleventh National Conference on Artificial Intelligence,

pages 459-466, Washington, D.C. AAAI Press/MIT Press.

[Mahadevan et al., 1993] Mahadevan, S., Mitchell, T., Mostow, J., Steinberg, L., and
Tadepalli, P. (1993). An apprentice-based approach to knowledge acquisition. Ar-

tificial Intelligence, 64(1).

[Mitchell et al., 1985] Mitchell, T., Mahadevan, S., and Steinberg, L. (1985). LEAP:
A learning apprentice for VLSI design. In Proceedings of the Ninth International

Joint Conference on Artificial Intelligence. Morgan Kaufmann.

[Quinlan, 1983] Quinlan, J. R. (1983). Learning efficient classification procedures and
their application to chess end games. In Carbonell, J. G., Michalski, R. S., and
Mitchell, T. M., editors, Machine Learning, volume 1, pages 463-482. Tioga, Palo

Alto, CA.

[Quinlan, 1986] Quinlan, J. R. (1986). Induction of decision trees. Machine Learning,

1:81-106.

[Quinlan, 1993] Quinlan, R. (1993). C4.5: Programs for Machine Learning. Morgan

Kaufmann, San Mateo, CA.

[Stanfill and Waltz, 1986] Stanfill, C. and Waltz, D. (1986). Toward memory-based

reasoning. Communications of the ACM, 29(12).

Automated Acquisition of User Preferences 43

[Utgoff and Clouse, 1991] Utgoff, P. and Clouse (1991). Two kinds of training infor-
mation for evaluation function learning. In Proceedings of Ninth National Confer-

ence on Artificial Intelligence, pages 596-600, Anaheim. AAAT Press/MIT Press.

[Utgoff and Saxena, 1987] Utgoff, P. and Saxena, S. (1987). Learning a preference
predicate. In Proceedings of the Fourth International Workshop on Machine Learn-

ing, pages 115-121.

[Zweben et al., 1992] Zweben, M., Davis, E., Daun, B., and Deale, M. (1992).
Rescheduling with iterative repair. Technical Report FIA-92-05, NASA Ames Re-

search Center.

