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Abstract. Many algorithms for finding community structure in graphs
search for a partition that maximizes modularity. However, recent work
has identified two important limitations of modularity as a community
quality criterion: a resolution limit; and a bias towards finding equal-sized
communities. Information-theoretic approaches that search for partitions
that minimize description length are a recent alternative to modularity.
This paper shows that two information-theoretic algorithms are them-
selves subject to a resolution limit, identifies the component of each
approach that is responsible for the resolution limit, proposes a vari-
ant, SGE (Sparse Graph Encoding), that addresses this limitation, and
demonstrates on three artificial data sets that (1) SGE does not exhibit a
resolution limit on sparse graphs in which other approaches do, and that
(2) modularity and the compression-based algorithms, including SGE,
behave similarly on graphs not subject to the resolution limit.

1 Introduction

Many complex networks, such as the Internet, metabolic pathways, and social
networks, are characterized by a community structure that groups related ver-
tices together. Traditional clustering techniques group vertices based on some
metric for attribute similarity [2]. More recent research has focused on detection
of community structure from graph topology. Under this approach, the input to
a community-detection algorithm is a graph in which vertices correspond to indi-
viduals (e.g., URLs, molecules, or people) and edges correspond to relationships
(e.g., hyperlinks, chemical reactions, or marital and business ties). The output
consists of a partition of the graph in which subgraphs correspond to meaningful
groupings (e.g., web communities, families of molecules, or social clans).1

Community detection algorithms can be viewed as comprising two compo-
nents: a utility function that expresses the quality of any given partition of a

1 Some communities, such as social clubs and families, can overlap. Membership in
such communities is better modeled as attributes of vertices rather than through
a partition of the graph [3]. The focus of this paper, however, as in the bulk of
community detection research, is on partition-based community structure.
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utility function search strategy algorithm

modularity DHC/betweenness centrality Newman & Girvan (2004) [11]

modularity AHC Newman (2004) [1]

modularity Genetic Algorithm Tasgin & Bingol (2006) [12]

modularity DHC/network structure index Rattigan et al. (2007) [13]

modularity AHC/spectral division Donetti & Munoz (2004) [14]

log-likelihood fixed-point iteration Zhang et al. (2007) [15]

MDL simulated annealing Rosvall & Bergstrom (2007) [16]

MDL iterated hill climbing Chakrabarti (2004) [8]
Table 1. Utility functions and search strategies for various community-detection algo-
rithms. DHC represents divisive hierarchical clustering, ADHH represents agglomera-
tive hierarchical clustering, and MDL represents “Minimum Description length.”

graph; and a search strategy that specifies a procedure for finding a partition
that optimizes the utility function. Table 1 sets forth utility functions and search
strategies of eight recent community-detection algorithms, showing that utility
functions have been paired with a variety of different search strategies.

The utility function most prevalent in recent community detection research
is the modularity function introduced in [1]:

Q =
∑

1<i≤m

(w(Dii)/l − (li/l)
2) (1)

where i is the index of the communities, w(Dii) is the number of edges in the
graph that connect pairs of vertices within community i, li =

∑

j≤i w(Dij), i.e.,
the number of edges in the graph that are incident to at least one vertex in
community i, and l is the total number of edges in the entire graph. Modularity
formalizes the intuition that communities consist of groups of entities having
more links with each other than with members of other groups.

Because of the shortage of real-world data sets with known community struc-
ture, maximum modularity has sometimes even been equated with correct com-
munity structure. However, two important weaknesses have been identified in
modularity as a community-structure criterion.

First, the group structure that optimizes modularity within a given subgraph
can depend on the number of edges in the entire graph in which the subgraph is
embedded. Specifically, modularity is characterized by an intrinsic scale under
which Q is maximized when pairs of distinct groups having fewer than

√
2l

edges (where l is the total number of edges in the graph) are combined into
single groups [4]. This phenomenon is apparent in ring graphs, i.e., connected
graphs that consist of identical subgraphs each connected to exactly two other
subgraphs by a single link. For example, in the graph shown in Figure 1 consisting
of a ring of 15 squares, modularity is greater when adjacent squares are grouped
together than when each square is a separate group.

A second weakness of modularity is that even when the resolution limit is not
exceeded, modularity exhibits a bias towards groups of similar size. Intuitively,
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the sum of the square terms, (li/l)
2, representing the expected number of intra-

group edges within community i under the null model, is minimized, and Q
therefore maximized, when all li are as nearly equal in size as possible.

Fig. 1. Ring graph R15,4 consisting of 15 communities, each containing 4 vertices.

One approach to the resolution limit of modularity is to apply modularity
recursively, so that the coarse structure found at one level is refined at lower
levels [5].2 An alternative approach is to substitute a different community-quality
criterion for modularity.

One such alternative criterion for community quality that has recently been
proposed, based on information theory, is minimizing description length [7–9].
In this approach, the quality of a given partition of a graph is a function of the
complexity of the community structure together with the mutual information
between the community structure and the graph as a whole. The best commu-
nity structure is one that minimizes the sum of (1) the number of bits needed to
represent the community structure plus (2) the number of bits needed to repre-

2 See [6] for recent approach that addresses resolution limits by using an absolute
evaluation of community structure rather than comparison to a null model.
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sent the entire graph given the community structure. Under this approach, the
task of community detection consists of finding the community structure that
leads to the minimum description length (MDL) representation of the graph,
where description length is measured in number of bits.

The structure of the paper is as follows: Section 2 of this paper compares the
compression approach used in two previous approaches to information-theoretic
community detection and identifies a feature common to both that can lead
to a bias toward combining distinct communities in large sparse graphs. An
alternative encoding, termed SGE (Sparse Graph Encoding) that addresses this
bias is proposed in Section 3. Section 4 describes the design of an empirical
evaluation comparing the previous information-theoretic utility functions, SGE,
and modularity on three classes of artificial data. The results of this experiment
are set forth in Section 5.

2 Minimum Description Length Encodings

The intuition behind the minimum description length (MDL) criterion for com-
munity structure is that a partition of a graph that permits a more concise
description of the graph is more faithful to the actual community structure than
a partition leading to a less concise description. The best partition is the one
that lends itself to the most concise description, that is, the encoding of the par-
tition and of the graph given with the partition in the fewest bits. However, the
minimum description length (MDL) criterion does not in itself specify how to
encode either the community structure or the graph given the community struc-
ture. Indeed, the close connection between MDL and Kolmogorov complexity
[10], which is undecidable, suggests that MDL may itself be undecidable.

The encoding algorithms of Rosvall and Bergstrom [7] (hereinafter “RB”) and
Chakrabarti [8] (hereinafter “AP,” standing for “AutoPart”) use quite different
approaches to measuring the description length of community structures and
graphs. However, RB and AP have in common that both are characterized by a
resolution limit similar to that observed in modularity.

RB and AP decompose the task of encoding a graph and its community
structure into similar steps, but they calculate the bits in each term differently.
For the purposes of this comparison, the following notation will be followed:

– n - the number of vertices in the graph
– m - the number of groups
– ai - the number of vertices in group i
– l - the total number of edges in the entire graph
– li - the number of edges incident to group i
– Dij - a binary adjacency matrix between groups i and j
– n(Dij) - the number of elements in adjacency matrix D
– w(Dij) - the number of 1’s in Dij , i.e., the number of edges between groups

i and j

– P (Dij) - the density of 1’s in Dij , i.e.,
w(Dij)
n(Dij)
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– P ′(Dij) - for a square matrix Dij , the density of 1’s ignoring the diagonal
– H(Dij) = −P (Dij) log(P (Dij))−(1−P (Dij)) log(1−P (Dij)), i.e., the mean

entropy of Dij

– H ′(Dij) = −P ′(Dij) log(P
′(Dij))− (1− P ′(Dij)) log(1− P ′(Dij)), i.e., the

mean entropy of Dij if values on the diagonal of Dij are ignored
– B - a matrix representing for each pair of groups whether the pair is con-

nected, i.e., Bij = 1 ⇐⇒ w(Dij) > 0

The encoding schemes used in RB and AP are as follows:

1. Bits needed to represent the number of vertices in the graph. Since this term
doesn’t vary with differing community structure, it is irrelevant to the choice
between different community structures and can be ignored.

2. Bits needed to represent the number of groups.

– RB. Not explicitly represented.
– AP. log∗(m). log∗(x) = log2(x) + log2log2(x) + ... where only positive

terms are included in the sum. This series is apparently intended to
represent the mean coding length of integers given that the probability
of an integer of a given length is a monotonically decreasing function
of the integer’s length, i.e., longer integers are less probable, but no
maximum length is known [17].

3. Bits needed to represent the association between vertices and groups

– RB. n log(m). The rationale appears to be that for each of the n vertices,
log(m) bits are needed to identify the group to which the vertex belongs.

– AP. If the groups are placed in decreasing order of length, i.e., a1 ≥ a2 ≥
... ≥ am ≥ 1,

m−1
∑

i=1

⌈log(ai)⌉

where ai = (
∑m

t=1 at)−m+ i.

4. Bits needed for the group adjacency matrix, i.e., the number of edges between
pairs of groups.

– RB. 1
2m(m+1) log(l). The first term ( 12m(m+1)) represents the number

of pairs of groups, and the second term (log(l)) the number of bits needed
to specify the number of edges between any pair of groups.

– AP.
∑

1<i,j<m

⌈log(aiaj + 1)⌉

This expression sums for every pair of groups sufficient bits to represent
the number of edges between that pair.

5. Bits needed to represent the full adjacency matrix for vertices, given the
group structure represented in terms 2-4.

– RB.

log(

m
∏

i=1

(

ai(ai − 1)/2
w(Dii)

)

∏

i<j

(

aiaj
w(Dij)

)

)
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The expression following the first product sign represents the number of
ways to choose the actual pairs that are connected within a single group
from the set of all possible pairs. The expression following the second
product sign is the number of ways to choose the actual pairs between
vertices in two different groups from the set of possible edges between
vertices in those groups.

– AP.
m
∑

i=1

m
∑

j=1

aiajH(Dij)

For each pair of groups, the entropy of the adjacency matrix for that
pair, i.e., the size of the matrix times its the mean entropy.

RB and AP clearly calculate each term quite differently. In general, RB uses
encodings that are much larger than those used in AP. However, a key similarity
is in term 4, the bits needed to encode the number of edges between pairs of
groups. In both RB and AP at least one bit is required for each pair of groups
regardless of how few groups are actually connected (i.e., how few pairs of groups
have at least one edge from a vertex in one to a vertex in the other). The number
of bits arising from this term therefore increases with the square of the number
of groups, regardless of the sparsity of their interconnections. One would expect
that for sufficiently large graphs with sparse community structure the savings
in term 4 from combining groups would be greater than the added cost in term
5 of specifying the vertex adjacencies for the resulting relatively sparse group,
and that this would lead to conflation of distinct groups similar to that observed
when modularity is used as a community quality function. As discussed in the
evaluation below, this conflation is in fact observed. For example, the number
of bits required to encode the graph shown in Figure 1 is lower under both the
RB and AP procedures if some pair of adjacent groups are combined, yielding
14 communities, than if it is divided into 15 equal communities.

3 Sparse Graph Encoding (SGE)

The observations that RB and AP (1) assign at least one bit per pair of com-
munities, regardless of how few are actually connected and (2) conflate distinct
groups in large sparse graphs (as shown experimentally below) suggests the hy-
pothesis that an encoding in which the bits required to encode the number of
edges between pairs of groups grow more slowly than the square of the number
of groups would be less prone to the resolution limit. Sparse Graph Encoding
(SGE) is an encoding scheme designed to test this hypothesis.

The key idea is to encode the group adjacency matrix using two terms. The
first term encodes, for each pair of groups, whether the groups are connected.
The number of bits required for this is equal to the entropy of B, the binary
matrix representing for each pair of groups whether those groups are connected.
The mean entropy of B is at most 1.0, if each group is randomly connected to
exactly half the others. If few, or most, groups are connected to one another, the
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mean entropy is less than 1.0, and the total entropy is therefore less than the
square of the number of groups.

Moreover, the number of bits needed to represent B can be further reduced by
noting that the value of B’s diagonal need not be explicitly represented because
it can be determined from the number of nodes in each group. Singleton groups
have no within-group edges (assuming that self-loops are prohibited) and groups
with more than one element must have at least one within-group edge (if there
are no within-group edges, the density of within-group edges cannot be higher
than the density of between-group edges, the basic characteristic of a group).

The bits needed to represent B are therefore:

m(m− 1)H ′(B) (2)

where H ′(B) = −P ′(B) log(P ′(B)) − (1 − P ′(B)) log(1 − P ′(B)) and P ′(B) is
the density of 1’s in B, ignoring the diagonal.

The second term contains, for each connected pair, the number of bits needed
to represent the number of edges between that pair (the second sum is needed
if, as we assume, edges from a vertex to itself are forbidden):

∑

i6=j∧w(Dij)≥0

log(aiaj) +
∑

i=j∧w(Dij)>0

log(ai(aj − 1)) (3)

If the cost of representing the group adjacent matrix is calculated as expres-
sion 2 + expression 3, the cost will grow with the number of connected pairs
rather than with the total number of pairs.

SGE employs several additional minor modifications to further reduce the
description length. The entire calculation is as follows:

1. Bits needed to represent the number of vertices in the graph. As with RB
and AP, these bits are ignored.

2. Bits needed to represent the number of groups. The log* function of [17]
used in AP is predicated on the assumption that no maximum integer size is
known a priori. Here, however, the maximum number of groups is bounded
by both the machine word size and the virtual memory size of the machine
on which the algorithm is executed. Therefore, SGE uses instead RB’s cal-
culation:

log(m)

3. Bits needed to represent the association between vertices and groups. No
group can contain more than n−m+ l vertices (since each group must have
at least one vertex). Accordingly, the following expression contains sufficient
bits to represent the number of vertices in all m groups:

m log(n−m+ 1)

4. Bits needed for the group adjacency matrix, i.e., the number of edges between
pairs of groups. As discussed above, the number of bits is:

H ′(B) +
∑

i6=j∧w(Dij)>0

log(aiaj) +
∑

i=j∧w(Dij)>0

log(ai(aj − 1))
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5. Bits needed to represent the full adjacency matrix for vertices given the
group structure represented in terms 2-4. This consists, for every pair of
groups i and j, of size of the i, j adjacency matrix, aiaj , times the entropy
per entry in the corresponding binary matrix, H(Dij). This is equivalent to
the AP calculation, shown above:

m
∑

i=1

m
∑

j=1

aiajH(Dij)

In summary, the relationship between SGE, RB, and AP is as follows:

1. Bits needed to represent the number of vertices in the graph. Ignored as in
RB and AP.

2. Bits needed to represent the number of groups. Follows RB.
3. Bits needed to represent the association between vertices and groups. Uses

an expression with fewer bits than that used in RB, and that is simpler than
that used in AP.

4. Bits needed for the group adjacency matrix. The primary novelty of SGE,
in that for sparse adjacency matrices this term grows more slowly than the
square of the number of groups.

5. Bits needed to represent the full adjacency matrix for vertices. Follows AP.

4 Empirical Evaluation

The previous section suggested that a graph encoding in which the calculation of
the number bits required to represent a group adjacency matrix was reduced from
an expression that grows as the square of the number of groups, as in RB and AP,
to an expression that grows in proportion to the number of pairs of connected
groups, as in SGE, would reduce or eliminate any resolution limit in sparsely
connected graphs. This hypothesis was tested by comparing the communities
found by optimizing RB, AP, SGE, and modularity on three different artificial
data sets.

To avoid conflating the effect of a utility function with the behavior of a
search strategy, it was necessary to compare alternative utility functions using a
single common search strategy. Accordingly, a single search function was applied
to all for utility functions in the experimental evaluation: the greedy divisive hi-
erarchical clustering algorithm of Newman & Girvan (2004) [11]. In the Newman
& Girvan procedure, the edge with the highest betweenness centrality is itera-
tively removed, and the partition in the resulting sequence having the optimal
value under the utility function was returned as the community structure. Us-
ing a single search strategy removes the potentially confounding disparity of the
search algorithms used in published descriptions of RB, AP, and modularity.

4.1 Evaluation Criteria

Various objective functions have been proposed for evaluating the quality of a
proposed community structure given the actual correct community structure,
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including the Rand index [23], the adjusted Rand index [24], and f-measure.
There is no consensus regarding the most informative objective function. In this
evaluation, f-measure was selected since its use in information retrieval has made
it familiar to a wide range of researchers.

The intuition underlying the use of f-measure is that group structure can
be expressed as a relation c(G) = {〈vi, vj〉 | ∃g ∈ G ∧ vi, vj ∈ g}, that is, the
community structure can be represented by specifying for each pair of vertices
whether that pair is in the same group. The similarity between the proposed
group structure and the actual group structure can be evaluated by comparing
c(proposed) with c(actual). One way to make the comparison is to view each
pair in c(proposed) that is also in c(actual) as a true positive, whereas each pair
in c(proposed) that is not in c(actual) is a false positive. Under this view, recall
and precision can be defined as follows:

– Recall =
|c(proposed)|

⋂
|c(actual)|

|c(actual)|

– Precision =
|c(proposed)|

⋂
|c(actual)|

|c(proposed)|

F-measure is the harmonic mean of recall and precision:

– F-measure =
2 ∗ recall ∗ precision
recall + precision

4.2 Experimental Procedure

Three experiments were performed, each with a different type of artificial graph.
The first, ring graphs, are characterized by the sparsity of connections between
groups observed in many large-scale real-world graphs [20]. The second, uniform
random graphs, has been used in a number of evaluations of community-detection
algorithms. The third, embedded Barabasi-Albert Graphs, consists of communities
generated by preferential attachment [20] embedded in a random graph. Fifty
trials were performed under each experimental condition for uniform random
and EBA graphs. There is no randomness in the construction of ring graphs, so
a single trial was sufficient.

Experiment 1: Ring graphs. Ring graph Rm,c comprises m communities,
each consisting of a ring of c vertices, connected to two other communities,
each by a single link, such that all communities are connected. Ring graphs are
similar to the clique rings of [4] but differ in that the individual communities are
themselves rings rather than cliques. For example, Figure 1 depicts ring graph
R15,4.

The evaluation compared RB, AP, SGE, and modularity on 91 ring graphs for
which 〈m, c〉 ∈ {4 . . . 16} × {3 . . . 9}.3 Strikingly different behavior was observed

3 Note that for m, c > 3 ring graphs contain no triangles. Therefore, community de-
tection techniques based on clustering coefficient, e.g., [18], are ineffective for finding
communities in such ring graphs.
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Fig. 2. A uniform random graph with 32 vertices, 4 groups, size ratio 1.25, and io ratio
0.67.
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Fig. 3. An Embedded Barabasi-Albert (EBA) graph with 4 communities, each with
5 initial vertices per community, 3 new edges per time step, 10 time steps, and 25
singleton-group edges.
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among the four community-structure utility functions. Optimizing SGE led to
the correct partitions in all but two ring graphs, but RB and AP found no correct
partitions. Optimizing modularity led to correct partitions only for those graphs
below the resolution threshold identified by [4].

– SGE. The partition having the optimal (lowest) SGE had the correct parti-
tion (i.e., no separate communities were conflated) in every graph except for
R4,3 and R13,3 In other words, the correct community structure was found
in 89 out of 91 ring graphs.

– RB and AP. No community structure was found by optimizing either RB
or AP. The partition having the optimal (lowest) value for RB and AP
contained at least one pair of communities that were grouped together in
every ring graph tested.

– Modularity. Optimizing modularity led to incorrect community structure
for rings of more than 8 triangles, more than 10 squares, more than 11 pen-
tagons, or more that 13 hexagons or heptagons. In other words, the correct
partitions were obtained with modularity only for rings and communities of
the following sizes:
• R4,3 −R8,3

• R4,4 −R10,4

• R4,5 −R11,5

• R4,6 −R13,6

• R4,7 −R13,7

• R4,8 −R16,8

• R4,9 −R16,9

This evaluation confirmed empirically the existence of the resolution limit
for modularity derived formally in [4]. The evaluation also showed the surprising
result that optimizing RB and AP leads to even more conflation of distinct
communities than does modularity. The observation that optimizing SGE led to
the correct community structure provides confirmation for the hypothesis that
the conflation of communities in RB and AP arises from term 4, which uses more
bits than necessary to represent the number of edges connecting groups in sparse
graphs. Substituting rings of cliques for rings of graphs that are themselves rings
leads to almost identical results to those described here.

Experiment 2: Uniform random graphs. A common data set for testing
community-extraction algorithms consists of random networks of 128 vertices
divided into 4 communities with average vertex degree of 16 [11, 16, 19]. In this
experiment, the relative size of the communities was controlled by a size ratio

parameter s such that if the communities were placed in ascending order, |ai+1|
|ai|

=

s, where ai is the ith communities. The connections among the vertices were
determined by the average vertex degree d and in/out ratio i such that the
average number of within-community edges incident to each vertex was i ∗ d
and the average number of cross-community edges incident to each vertex was
(1− i) ∗ d. For example, Figure 2 shows a uniform random graph with s = 1.25
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Fig. 4. F-measure for uniform random graphs with i=0.6 (weak community structure).

Fig. 5. F-measure for uniform random graphs with i=0.75 (moderate community struc-
ture).
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Fig. 6. F-measure for uniform random graphs with i=0.9 (strong community structure).

and i = 0.6. Tests were performed for each combination of n = 32,m = 4, d =
6, s ∈ {1.0, 1.25, 1.5, 1.75, 2.0}, and i ∈ {0.6, 0.75, 0.9}.

Figures 4, 5, and 6 show the results of the 4 algorithms on uniform graphs
for i ∈ {0.6, 0.75, 0.9} respectively. For i ∈ {0.75, 0.9}, in which the community
structure is relatively distinct, all four algorithms led to similar results except
when the size ratio s was equal to 2.0 (i.e., the sizes of the groups were highly
skewed). Under these circumstances, modularity led to much lower f-measure
than the other algorithms. When i was equal to 0.6 (i.e., the community structure
was relatively unclear) modularity was best and AP worst for low size ratio, and
RB and AP were best for high size ratio. These results are consistent with [7],
which showed better performance for RB than modularity for skewed community
sizes, but comparable performance when community sizes were equal.

Experiment 3: Embedded Barabasi-Albert Graphs. A wide range of nat-
urally occurring graphs, including those mentioned in the introduction (the In-
ternet, biochemical pathways, social networks) exhibit a power-law degree dis-
tribution that is not present in uniform random graphs [20–22]. However, few
such “scale-free” graphs are annotated with correct community structure. The
third data set consisted of communities with scale-free structure embedded in
a sparse random graph. Each graph consists of m communities generated by
the Jung 1.74 implementation of the Barabasi-Albert preferential attachment
algorithm, each starting with i initial vertices in each community, with e new
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Fig. 7. F-measure for embedded Barabasi-Albert graph with 2–4 edges added per time
step.

edges per time step following the preferential attachment rule of [20] for each of
t time steps, together with c singleton-group vertices. The singleton-group ver-
tices were connected to 1. . . e vertices randomly selected from the entire graph,
i.e., including both community and singleton-group vertices. The graphs used tor
testing had 4 communities, 4 initial vertices per community, 2–4 edges added per
time step, 20 time steps, and 25 singleton-group vertices. For example, Figure
3 depicts an EBA graph with 3 edges added per time step. In evaluating EBA
graphs, singleton-group vertices were ignored, regardless of whether they were
grouped into new communities or added to existing communities.

As shown in Figure 7, the behavior of all four algorithms was quite similar
when the number of edges added per time step was 3 or 4, which leads to
relatively densely connected graphs. When only 2 edges were added per time
step (i.e., the communities where quite sparse), AP’s performance was much
worse, and SGE’s somewhat worse, than that of the other two algorithms.

5 Conclusion

The empirical evaluation demonstrated that RB and AP conflate distinct com-
munities in ring graphs, and that changing the calculation of the number of bits
needed to represent the group adjacency matrix eliminated this conflation over
the range of ring graphs tested. Ring graphs are artifacts not likely to occur
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in many real-world graphs of interest, but many real-world graphs are like ring
graphs in having very sparse group adjacency matrices (i.e., communities with
links to few other communities). The ring-graph experiment suggests that RB
and AP may perform even more poorly than modularity in such graphs.

SGE’s description length calculation did not entirely eliminate resolution lim-
its in clustering. For example, SGE combines adjacent communities in extremely
large rings, such as R100,4. Moreover, SGE combines adjacent communities in
R3,4 and R13,3. Thus, it appears that SGE’s bit encoding is not optimal even in
sparse graphs.

No one algorithm consistently outperformed the others in EBA or uniform
random graphs, but modularity was consistently worse than the MDL algorithms
on highly skewed uniform random graphs, and AP and SGE had lower perfor-
mance than the others on sparse EBA graphs. Neither uniform random graphs
nor EBA graphs have the sparse group adjacency matrices that characterize
ring graphs, so most errors consist of assigning a vertex to the wrong commu-
nity rather than combining two communities that should remain distinct. Under
these circumstances, SGE’s representation of the group adjacency matrix confers
no particular benefit.

While MDL is clearly a powerful tool for identifying community structure,
there are many options for MDL encodings, and the consequences of each choice
can be difficult to anticipate. SGE demonstrates that the resolution limits of RB
and AP in graphs with sparse group adjacency matrices can be easily addressed,
but the fact that SGE did not outperform RB or RB on other types of graphs
suggests that considerable subtlety is required to identify the MDL encoding
most effective over a wide range of graph and community types.
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