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ABSTRACT
A popular approach to community detection in networks is
to search for partitions that maximize modularity [7]. How-
ever, recent work has identified two important limitations
of modularity as a community quality criterion: a resolu-
tion limit; and a bias towards finding equal-sized commu-
nities. Compression-based approaches that search for parti-
tions that minimize description length are a recent alterna-
tive to modularity. This paper shows that two compression-
based algorithms are themselves subject to a resolution limit,
identifies the aspect of each approach that is responsible for
the resolution limit, proposes a variant, SGE (Sparse Graph
Encoding), that addresses this limitation, and demonstrates
on three artificial data sets that (1) SGE does not exhibit a
resolution limit on graphs in which other approaches do, and
that (2) modularity and the compression-based algorithms,
including SGE, behave similarly on graphs not subject to
the resolution limit.

General Terms
Community detection, minimum description length princi-
ple, modularity

1. INTRODUCTION
Complex networks, such as the Internet, metabolic path-

ways, and social networks, can often be characterized by a
community structure in which related vertices are grouped
together. Traditional clustering techniques group vertices by
some measure of attribute similarity. More recent research
has focused on detection of community structure from graph
topology. Under this approach, the input to a community-
detection algorithm is a graph in which vertices correspond
to individuals (e.g., URLs, molecules, or people) and edges
correspond to relationships (e.g., hyperlinks, chemical reac-
tions, or marital and business ties). The output consists
of a partition of the graph in which subgraphs correspond
to meaningful groupings (e.g., web communities, families of
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molecules, or social clans).1

Community detection algorithms can be viewed as com-
prising two components: a utility function that expresses
the quality of any given partition of a graph; and a search
strategy that specifies a procedure for finding a partition
that optimizes the utility function. The utility function
most prevalent in recent community detection research is
the modularity function introduced in [7]:

Q =
∑

1<i≤m

(w(Dii)/l − (li/l)2) (1)

where i is the index of the communities, w(Dii) is the num-
ber of edges in the graph that connect pairs of vertices within
community i, li =

∑

j≤i
w(Dij), i.e., the number of edges

in the graph that are incident to at least one vertex in com-
munity i, and l is the total number of edges in the entire
graph. Modularity formalizes the intuition that community
structure is manifested in a higher density of links within
groups than between groups.

Because of the shortage of real-world data sets with known
community structure, maximum modularity has sometimes
even been equated with correct community structure. How-
ever, two important weaknesses have been identified in mod-
ularity as a community-structure criterion.

First, the group structure that optimizes modularity within
a given subgraph can depend on the number of edges in the
entire graph in which the subgraph is embedded. Stated
differently, modularity is characterized by an intrinsic scale
under which Q is maximized when pairs of distinct groups
having fewer than

√
2l edges (where l is the total number

of edges in the graph) are combined into single groups [4].
This phenomenon is particularly apparent in ring graphs,
i.e., connected graphs that consist of identical subgraphs
each connected to exactly two other subgraphs by a single
link. For example, in the graph shown in Figure 1 consisting
of a ring of 15 squares, modularity is greater when adjacent
squares are grouped together than when each square is a
separate group.

A second weakness of modularity is that even when the
resolution limit is not exceeded, modularity exhibits a bias
towards groups of similar size. Intuitively, the sum of the
square terms (li/l)2, representing the expected number of
intra-group edges within community i under the null model,

1Some communities can overlap. Membership in such com-
munities is better modeled as attributes of vertices rather
than through a partition of the graph [6]. The focus of this
paper, however, as in the bulk of community detection re-
search, is on partition-based community structure.



is minimized, and Q therefore maximized, when all li are as
nearly equal in size as possible.

One approach to the resolution limit of modularity is ap-
ply modularity recursively, so that the coarse structure found
at one level is refined at lower levels [12].2 An alternative
approach is to substitute a different community-quality cri-
terion for modularity.

One such alternative criterion for community quality that
has recently been proposed is based on compression, that is,
on minimizing description length [11, 2]. In this approach,
the quality of a given partition of a graph is a function of
the complexity of the community structure together with
the mutual information between the community structure
and the graph as a whole. The best community structure is
one that minimizes the sum of (1) the number of bits needed
to represent the community structure plus (2) the number
of bits needed to represent entire graph given the commu-
nity structure. Under this approach, the task of community
detection is reduced to the problem of finding the commu-
nity structure that leads to the minimum description length
(MDL) representation of the graph, where description length
is measured in number of bits.

The minimum description length criterion for community-
structure quality does not in itself specify how to encode ei-
ther the community structure or the graph given the commu-
nity structure. Indeed, the close connection between MDL
and Kolmogorov complexity [13], which is undecidable, sug-
gests that MDL may itself be undecidable. The encoding
algorithms of Rosvall and Bergstrom [11] (hereinafter ”RB”)
and Chakrabarti [2] (hereinafter “AP”, standing for “Au-
toPart”) use quite different approaches to measuring the de-
scription length of community structures and graphs. As
shown below, however, RB and AP have in common that
both are characterized by a resolution limit similar to that
observed in modularity.

This paper compares the encoding schemes of RB and AP,
identifying the aspect of these schemes that is responsible
for the resolution limit, proposes an alternative encoding,
termed SGE (Sparse Graph Encoding) that addresses this
limitation, and describes an empirical evaluation comparing
RB, AP, SGE, and modularity on three classes of artificial
data: rings of communities; uniform random graphs; and
embedded BarrabasiAlbert (EBA) graphs, that is, graphs
consisting of communities generated by the Barrabasi-Albert
algorithm embedded in a sparse random graph. In this eval-
uation, SGE was least affected by the resolution limit, incor-
rectly combining adjacent communities in community rings
only when the ring size was extremely large. By contrast,
the other algorithms combining adjacent communities in a
wide range of ring sizes. No one algorithm consistently out-
performed the others in EBA or uniform random graphs, but
modularity was consistently worse than the MDL algorithms
on highly skewed uniform random graphs

2. MDL ENCODINGS
RB and AP decompose the task of encoding a graph and

its community structure into similar steps, but they calcu-
late the bits in each term differently. For the purposes of
this comparison, the following notation will be followed:

2See [10] for recent approach that addresses resolution lim-
its by using an absolute evaluation of community structure
rather than comparison to a null model.

• n - the number of vertices in the graph

• m - the number of groups

• ai - the number of vertices in group i

• l - the total number of edges in the entire graph

• li - the number of edges incident to group i

• Dij - a binary adjacency matrix between groups i and
j

• n(Dij) - the number of elements in adjacency matrix
D

• w(Dij) - the number of 1’s in Dij , i.e., the number of
edges between groups i and j

• P (Dij) - the density of 1’s in Dij , i.e.,
w(Dij)

n(Dij)

• P ′(Dij) - for a square matrix Dij , the density of 1’s
ignoring the diagonal

• H(Dij) = −P (Dij) log(P (Dij))− (1−P (Dij)) log(1−
P (Dij)), i.e., the mean entropy of Dij

• H ′(Dij) = −P ′(Dij) log(P ′(Dij))−(1−P ′(Dij)) log(1−
P ′(Dij)), i.e., the mean entropy of Dij if values on the
diagonal of Dij are ignored

• B - a matrix representing for each pair of groups whether
the pair is connected, i.e., Bij = 1 ⇐⇒ w(Dij) > 0

The encoding schemes used in RB and AP are as follows:

1. Bits needed to represent the number of vertices in the
graph. Since this term doesn’t vary with differing com-
munity structure, it is irrelevant to the choice between
different community structures and can be ignored.

2. Bits needed to represent the number of groups.

• RB. Not explicitly represented.

• AP. log∗(m). log∗(x) = log2(x) + log2log2(x) +
... where only positive terms are included in the
sum. This series is apparently intended to repre-
sent the mean coding length of integers given that
the probability of an integer of a given length is
a monotone decreasing function of the integer’s
length, i.e., longer integers are less probable, but
no maximum length is known [9].

3. Bits needed to represent the association between ver-
tices and groups

• RB. n log(m). The rationale appears to be that
for each of the n vertices, log(m) bits are needed
to identify the group to which the vertex belongs.

• AP. If the groups are placed in decreasing order
of length, i.e., a1 ≥ a2 ≥ ... ≥ am ≥ 1,

m−1
∑

i=1

⌈log(ai)⌉

where ai = (
∑m

t=1 at) − m + i.

4. Bits needed for the group adjacency matrix, i.e., the
number of edges between pairs of groups.



• RB. 1
2
m(m+1) log(l). The first term ( 1

2
m(m+1))

represents the number of pairs of groups, and the
second term (log(l)) the number of bits needed to
specify the number of edges between any pair of
groups.

• AP.
∑

1<i,j<m

⌈log(aiaj + 1)⌉

This expression sums for every pair of groups suf-
ficient bits to represent the number of edges be-
tween that pair.

5. Bits needed to represent the full adjacency matrix for
vertices, given the group structure represented in terms
2-4.

• RB.

log(

m
∏

i=1

(

ai(ai − 1)/2
w(Dii)

)

∏

i<j

(

aiaj

w(Dij)

)

The expression following the first product sign
represents the number of ways to choose the ac-
tual pairs that are connected within a single group
from the set of all possible pairs. The expression
following the second product sign is the number of
ways to choose the actual pairs between vertices
in two different groups from the set of possible
edges between vertices in those groups.

• AP.
m

∑

i=1

m
∑

j=1

aiajH(Dij)

For each pair of groups, the entropy of the ad-
jacency matrix for that pair, i.e., the size of the
matrix times its the mean entropy.

RB and AP clearly calculated each term quite differently.
In general, RB uses encodings that are much larger than
those used in AP. However, a key similarity is in term 4, the
bits needed to encode the number of edges between pairs of
groups. In both RB and AP at least one bit is required for
each pair of groups regardless of how few groups are actu-
ally connected (i.e., how few pairs of groups have at least
one edge from a vertex in one to a vertex in the other). The
number of bits arising from this term therefore increases
with the square of the number of groups, regardless of the
sparsity of their interconnections. One would expect that
for sufficiently large graphs with sparse community struc-
ture the savings in term 4 from combining groups would be
greater than the added cost in term 5 of specifying the ver-
tex adjacencies for the resulting relatively sparse group, and
that this would lead to conflation of distinct groups similar
to that observed when modularity is used as a community
quality function. As discussed below, this conflation is in
fact observed. For example, RB and AP combine adjacent
groups when applied to the graph shown in Figure 1.

3. SPARSE GRAPH ENCODING (SGE)
The observations that RB and AP (1) assign at least one

bit per pair of communities, regardless of how few are ac-
tually connected and (2) conflate distinct groups in large

Figure 1: Ring graph R15,4 consisting of 15 commu-
nities, each containing 4 vertices.

sparse graphs (as shown experimentally below) suggests the
hypothesis that an encoding in which the bits required to
encode the number of edges between pairs of groups grow
more slowly than the square of the number of groups would
be less prone to the resolution limit. SGE is an encoding
scheme designed to test this hypothesis.

The key idea is to encode the group adjacency matrix
using two terms. The first term encodes, for each pair of
groups, whether the groups are connected. The number of
bits required for this is equal to the entropy of B, the binary
matrix representing for each pair of groups whether those
groups are connected. The mean entropy of B is at most
1.0, if each group is randomly connected to exactly half the
others. If few, or most, groups are connected to one another,
the mean entropy is less than 1.0, and the total entropy is
therefore less than the square of the number of groups.

Moreover, the number of bits needed to represent B can be
further reduced by noting that the value of B’s diagonal need
not be explicitly represented because it can be determined
from the number of nodes in each group. Singleton groups
have no within-group edges (assuming that self-loops are
prohibited) and groups with more than one element must
have at least one within-group edge (if there are no within-
group edges, the density of within-group edges can not be
higher than the density of between-group edges, the basic
characteristic of a group).

The bits needed to represent B are therefore:

m(m − 1)H ′(B) (2)

where H ′(B) = −P ′(B) log(P ′(B)) − (1 − P ′(B)) log(1 −
P ′(B)) and P ′(B) is the density of 1’s in B, ignoring the
diagonal.

The second term contains, for each connected pair, the
number of bits needed to represent the number of edges be-



tween that pair (the second sum is needed if, as we assume,
edges from a vertex to itself are forbidden):

∑

i6=j∧w(Dij)≥0

log(aiaj) +
∑

i=j∧w(Dij)>0

log(ai(aj − 1)) (3)

If the cost of representing the group adjacent matrix is
calculated as expressions 2 + expression 3, the cost will grow
with the number of connected pairs rather than with the
total number of pairs.

SGE employs several additional minor modifications to
reduce the description length. The entire calculation is as
follows:

1. Bits needed to represent the number of vertices in the
graph. As with RB and AP, these bits are ignored.

2. Bits needed to represent the number of groups. The
log* function of (Rissancn 1983) used in AP is predi-
cated on the assumption that no maximum integer size
is known a priori. Here, however, the maximum num-
ber of groups is bounded by both the machine word
size and the virtual memory size of the machine on
which the algorithm is executed. Therefore, SGE uses
instead RB’ s calculation:

log(m)

3. Bits needed to represent the association between ver-
tices and groups. No group can contain more than
n−m+ l vertices (since each group must have at least
one vertex). Accordingly, the following expression con-
tains sufficient bits to represent the number of vertices
in all m groups:

m log(n − m + 1)

4. Bits needed for the group adjacency matrix, i.e., the
number of edges between pairs of groups. As discussed
above, the number of bits is:

H ′(B)+
∑

i6=j∧w(Dij)>0

log(aiaj)+
∑

i=j∧w(Dij)>0

log(ai(aj−1))

5. Bits needed to represent the full adjacency matrix for
vertices given the group structure represented in terms
2-4. This consists, for every pair of groups i and j, of
size of the i, j adjacency matrix, aiaj , times the en-
tropy per entry in the corresponding binary matrix,
H(Dij). This is equivalent to the AP calculation,
shown above:

m
∑

i=1

m
∑

j=1

aiajH(Dij)

In summary, the relationship between SGE, RB, and AP
is as follows:

1. Bits needed to represent the number of vertices in the
graph. Ignored as in RB and AP.

2. Bits needed to represent the number of groups. Follows
RB.

Figure 2: A uniform random graph with 32 vertices,
4 groups, size ratio 1.25, and io ratio 0.67. “Mod”
is modularity, “RS” is Rosval-Bergstrom, “AP” is
AutoPart, and “SGE” is “sparse graph encoding.”

Figure 3: An Embedded Barabasi-Albert (EBA)
graph with 4 communities, each with 5 initial ver-
tices per community, 3 new edges per time step, 10
time steps, and 25 singleton-group edges.



3. Bits needed to represent the association between ver-
tices and groups. Uses an expression with fewer bits
than that used in RB, and that is simpler than that
used in AP.

4. Bits needed for the group adjacency matrix. The pri-
mary novelty of SGE, in that for sparse adjacency ma-
trices this term grows more slowly than the square of
the number of groups.

5. Bits needed to represent the full adjacency matrix for
vertices. Follows AP.

4. EXPERIMENTAL PROCEDURE
To test the hypothesis that the observed resolution limit

would be reduced by changing the calculation of the num-
ber bits required to represent the group adjacency matrix to
an expression that grows more slowly than the square of the
number of groups, the performance of SGE was compared to
that of RB, AP, and modularity on three different artificial
data sets. In all tests, the search strategy selected was the
greedy divisive clustering procedure that iteratively removes
the edge with the highest betweenness centrality described
in [7]. The evaluation criterion was applied to each parti-
tion created during this procedure and the partition with
the optimal value (highest value for modularity, lowest for
MDL criteria) was returned by the procedure. Using a single
search strategy removes the potentially confounding dispar-
ity of the search algorithms used in published descriptions
of RB, AP, and modularity. For example, [11] used simu-
lated annealing as their search strategy, whereas [2] used a
separate hill-climbing procedure for each value of m. Mod-
ularity has been combined with various search strategies,
including both greedy agglomerative [7] and greedy divisive
hierarchical clustering [7].

The artificial data sets created for the evaluation were as
follows:

• Ring graphs. Ring graph Rm,c consists of m com-
munities, each consisting of a ring of c vertices, con-
nected to two other communities each by a single link
such that all communities are connected. Ring graphs
are similar to the clique rings of [4] but differ in that
the individual communities are themselves rings rather
than cliques. For example, Figure 1 depicts ring graph
R15,4.

The evaluation compared RB, AP, SGE, and modular-
ity on 91 ring graphs for which 〈m, c〉 ∈ {4 . . . 16} ×
{3 . . . 9}.3

• Uniform random graphs. This data set was in-
tended to duplicate the artificial graphs used in the
evaluations set forth in [7] and [11]. The graphs were
generated by grouping n vertices into m communities.
The relative size of the communities was determined
by a size ratio s such that if the groups were placed
in ascending order,

ai+1

ai
= s. The connections among

the vertices were determined by the average vertex de-
gree d and in/out ratio i such that the average number

3Note that for m, c > 3 ring graphs contain no triangles.
Therefore, community detection techniques based on clus-
tering coefficient, e.g., [3], are ineffective for finding commu-
nities in such ring graphs.

of within-community edges incident to each vertex was
i∗d and the average number of cross-community edges
incident to each vertex was (1−i)∗d. For example, Fig-
ure 2 shows a uniform random graph with s = 1.25 and
i = 0.6. Tests were performed for each combination of
n = 32, m = 4, d = 6, s ∈ {1.0, 1.25, 1.5, 1.75, 2.0}, and
i ∈ {0.6, 0.75, 0.9}.

• Embedded Barabasi-Albert Graphs. A wide range
of naturally occurring graphs, including those men-
tioned in the introduction (the Internet, biochemical
pathways, social networks) exhibit a power-law de-
gree distribution that is not present in uniform ran-
dom graphs [1]. However, few such “scale-free” graphs
are annotated with correct community structure. The
third data set consists of communities with scale-free
structure embedded in a sparse random graph. Each
graph consists of m communities generated by the Jung
1.74 implementation of the Barabasi-Albert preferen-
tial attachment algorithm, each starting with i initial
vertices in each community, with e new edges per time
step following the preferential attachment rule of [1] for
each of t time steps, together with c singleton-group
vertices. The singleton-group vertices were connected
to 1. . . e vertices randomly selected from the entire
graph, i.e., including both community and singleton-
group vertices. The graphs used tor testing had 4 com-
munities, 4 initial vertices per community, 2–4 edges
added per time step, 20 time steps, and 25 singleton-
group vertices. For example, Figure 3 depicts an EBA
graph with 3 edges added per time step.

Fifty trials were performed under each experimental con-
dition for uniform random and EBA graphs (there is no
randomness in the construction of ring graphs, so a single
trial was sufficient).

4.1 Evaluation Criteria
Various objective functions have been proposed for eval-

uating the quality of a proposed community structure given
the actual correct community structure, including the Rand
index [8], the adjusted Rand index [5], and f-measure. There
is no consensus regarding the most informative objective
function, so f-measure was selected here since its use in in-
formation retrieval has made it familiar to a wide range of
researchers. The intuition underlying the use of f-measure is
that group structure can be expressed as a relation c(G) =
{〈vi, vj〉 | ∃g ∈ G ∋ vi, vj ∈ g}, that is, the community
structure can be represented by specifying for each pair of
vertices whether that pair is in the same group. The similar-
ity of the proposed to the actual group structure can be eval-
uated by comparing c(proposed) with c(actual). One way to
make the comparison is to view each pair in c(proposed) that
is also in c(actual) as a true positive, whereas each pair in
c(proposed) that is not in c(actual) is a false positive. Under
this view, recall and precision can be defined as follows:

• Recall =
|c(proposed)|⋂

|c(actual)|
|c(actual)|

• Precision =
|c(proposed)| ⋂

|c(actual)|
|c(proposed)|

F-measure is the harmonic mean of recall and precision:

• f-measure =
2 ∗ recall ∗ precision
recall + precision



In evaluating EBA graphs, singleton-group vertices were
ignored, regardless of whether they were grouped into new
communities or added to existing communities.

5. EXPERIMENTAL RESULTS

5.1 Ring graphs

• SGE. The partition having the optimal (lowest) SGE
had the correct partition (i.e., no separate communi-
ties were conflated) in every graph except for R4,3 and
R13,3 In other words, the correct community structure
was found all but 2 ring graphs.

• RB and AP. The correct community structure was
never found by optimizing either RB or AP. In other
words, the partition having the optimal (lowest) value
for RB and AP contained at least one pair of commu-
nities that were grouped together in every ring graph
tested.

• Modularity. Optimizing modularity led to incorrect
community structure for rings of more than 8 trian-
gles, more than 10 squares, more than 11 pentagons, or
more that 13 hexagons or heptagons. In other words,
the correct partitions were obtained with modularity
only for rings and communities of the following sizes:

– R4,3 − R8,3

– R4,4 − R10,4

– R4,5 − R11,5

– R4,6 − R13,6

– R4,7 − R13,7

– R4,8 − R16,8

– R4,9 − R16,9

This evaluation confirmed empirically the existence of the
resolution limit for modularity derived formally in [4]. The
evaluation also showed the surprising result that optimiz-
ing RB and AP leads to even more conflation of distinct
communities than does modularity. The observation that
optimizing SGE led to the correct community structure pro-
vides confirmation for the hypothesis that the conflation of
communities in RB and AP arises from term 4, which uses
more bits than necessary to represent the number of edges
connecting groups in sparse graphs. Substituting rings of
cliques for rings of graphs that are themselves rings leads to
almost identical results to those described here.

5.2 Uniform Random Graphs
Figures 4, 5, and 6 show the results of the 4 algorithms

on uniform graphs for i ∈ {0.6, 0.75, 0.9} respectively. For
i ∈ {0.75, 0.9}, in which the community structure is rela-
tively distinct, all four algorithms led to similar results ex-
cept when the size ratio s was equal to 2.0 (i.e., the sizes
of the groups were highly skewed). Under these circum-
stances, modularity led to much lower f-measure than the
other algorithms. When i was equal to 0.6 (i.e., the commu-
nity structure was relatively unclear) modularity was best
and AP worst for low size ratio, and RB and AP were best
for high size ratio. These results are consistent with [11],
which showed better performance for RB than modularity
for skewed community sizes, but comparable performance
when community sizes were equal.

Figure 4: F-measure for uniform random graphs
with i=0.6 (weak community structure).

Figure 5: F-measure for uniform random graphs
with i=0.75 (moderate community structure).



Figure 6: F-measure for uniform random graphs
with i=0.9 (strong community structure).

Figure 7: F-measure for embedded Barabasi-Albert
graph with 2–4 edges added per time step.

5.3 EBA Graphs
As shown in 7, the behavior of all four algorithms was

quite similar when the number of edges added per time
step was 3 or 4, which leads to relatively densely connected
graphs. When only 2 edges were added per time step (i.e.,
the communities where quite sparse), AP’s performance was
much worse, and SGE’s somewhat worse, than that of the
other two algorithms.

6. CONCLUSION
The empirical evaluation demonstrated that RB and AP

conflate distinct communities in ring graphs, and that chang-
ing the calculation of the number of bits needed to represent
the group adjacency matrix eliminated this conflation over
the range of ring graphs tested. Ring graphs are artifacts
not likely to occur in many real-world graphs of interest,
but there is a risk that a community-quality function that
handles ring graphs incorrectly would produce inaccurate or
misleading results when applied to more realistic graphs.

No one algorithm consistently outperformed the others in
EBA or uniform random graphs, but modularity was con-
sistently worse than the MDL algorithms on highly skewed
uniform random graphs, and AP and SGE had lower perfor-
mance than the others on sparse EBA graphs.

SGE’s description length calculation does not entirely elim-
inate resolution limits in clustering. For example, SGE com-
bines adjacent communities in extremely large rings, such as
R100,4. Moreover, SGE combines adjacent communities in
R3,4 and R13,3.

While MDL is clearly a powerful tool for identifying com-
munity structure, there are many options for MDL encod-
ings, and the consequences of each choice can be difficult
to anticipate. SGE demonstrates that one limitation of RB
and AP can be easily addressed, but the fact that SGE did
not, on the whole, outperform RB or RB on other types
of graphs suggests that considerable subtlety is required to
identify the MDL encoding most effective over a wide range
of graph and community types.
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